Abstract

The Wigner–Poisson equation is the most successful basis for transient simulations of quantum-effect semiconductor devices so far.
We present a full discretization of this nonlinear pseudo-differential system using a mixed spectral-collocation and operator splitting method. Convergence and nonlinear stability of the scheme are proven.

MSC codes

  1. 65M70
  2. 81S30

Keywords

  1. operator splitting methods
  2. collocation methods
  3. Wigner functions

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975xviii+268
2.
Anton Arnold, Francis Nier, Numerical analysis of the deterministic particle method applied to the Wigner equation, Math. Comp., 58 (1992), 645–669
3.
Anton Arnold, Christian Ringhofer, An operator splitting method for the Wigner-Poisson problem, SIAM J. Numer. Anal., 33 (1996), 1622–1643
4.
Christian Ringhofer, David Ferry, Norman Kluksdahl, Absorbing boundary conditions for the simulation of quantum transport phenomena, Transport Theory Statist. Phys., 18 (1989), 331–346
5.
U. Ravaioli, A. M. Kriman, W. Plötz, N. Kluksdahl, D. K. Ferry, Investigation of ballistic transport through resonant-tunneling quantum wells using Wigner function approach, Phys. B, 134 (1985), 36–40
6.
N. Kluksdahl, A. M. Kriman, D. K. Ferry, C. Ringhofer, Selfconsistent study of the resonant tunneling diode, Phys. Rev. B, 39 (1989), 7720–7735
7.
David Gilbarg, Neil S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 224, Springer-Verlag, Berlin, 1983xiii+513, Heidelberg, 2nd ed.
8.
Bertrand Mercier, An introduction to the numerical analysis of spectral methods, Lecture Notes in Physics, Vol. 318, Springer-Verlag, Berlin, 1989vi+154, Heidelberg
9.
Christian Ringhofer, A spectral method for the numerical simulation of quantum tunneling phenomena, SIAM J. Numer. Anal., 27 (1990), 32–50
10.
Christian Ringhofer, On the convergence of spectral methods for the Wigner-Poisson problem, Math. Models Methods Appl. Sci., 2 (1992), 91–111
11.
Christian Ringhofer, A spectral collocation technique for the solution of the Wigner-Poisson problem, SIAM J. Numer. Anal., 29 (1992), 679–700
12.
N. D. Suh, M. R. Feix, P. Bertrand, Numerical simulation of the quantum Liouville-Poisson system, J. Comput. Phys., 94 (1991), 403–418
13.
E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749–759

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1876 - 1894
ISSN (online): 1095-7170

History

Submitted: 14 April 1993
Accepted: 15 March 1994
Published online: 14 July 2006

MSC codes

  1. 65M70
  2. 81S30

Keywords

  1. operator splitting methods
  2. collocation methods
  3. Wigner functions

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media