Free access
Proceedings
2009 Proceedings of the Eleventh Workshop on Algorithm Engineering and Experiments (ALENEX)

Design and Implementation of a Practical I/O-efficient Shortest Paths Algorithm

Abstract

We report on initial experimental results for a practical I/O-efficient Single-Source Shortest-Paths (SSSP) algorithm on general undirected sparse graphs where the ratio between the largest and the smallest edge weight is reasonably bounded (for example integer weights in {1, …, 232}) and the realistic assumption holds that main memory is big enough to keep one bit per vertex. While our implementation only guarantees average-case efficiency, i.e., assuming randomly chosen edge-weights, it turns out that its performance on real-world instances with non-random edge weights is actually even better than on the respective inputs with random weights.
Furthermore, compared to the currently best implementation for external-memory BFS [6], which in a sense constitutes a lower bound for SSSP, the running time of our approach always stayed within a factor of five, for the most difficult graph classes the difference was even less than a factor of two.
We are not aware of any previous I/O-efficient implementation for the classic general SSSP in a (semi) external setting: in two recent projects [10, 23], Kumar/Schwabe-like SSSP approaches on graphs of at most 6 million vertices have been tested, forcing the authors to artificially restrict the main memory size, M, to rather unrealistic 4 to 16 MBytes in order not to leave the semi-external setting or produce huge running times for larger graphs: for random graphs of 220 vertices, the best previous approach needed over six hours. In contrast, for a similar ratio of input size vs. M, but on a 128 times larger and even sparser random graph, our approach was less than seven times slower, a relative gain of nearly 20. On a real-world 24 million node street graph, our implementation was over 40 times faster. Even larger gains of over 500 can be estimated for random line graphs based on previous experimental results for Munagala/Ranade-BFS. Finally, we also report on early results of experiments in which we replace the hard disk by a solid state disk (flash memory).

Formats available

You can view the full content in the following formats:

Information & Authors

Information

Published In

cover image Proceedings
2009 Proceedings of the Eleventh Workshop on Algorithm Engineering and Experiments (ALENEX)
Pages: 85 - 96
Editors: Irene Finocchi, University of Rome “La Sapienza”, Rome, Italy and John Hershberger, Mentor Graphics Corporation, Calibre Division, Wilsonville, Oregon
ISBN (Print): 978-0-898719-30-7
ISBN (Online): 978-1-61197-289-4

History

Published online: 18 December 2013

Authors

Affiliations

Notes

*
Partially supported by the DFG grant ME 3250/1-1, and by MADALGO - Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation
Partially supported by the DFG grant SA 933/3-1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media