Free access
Proceedings
Proceedings of the 2019 SIAM International Conference on Data Mining

Autonomous Deep Learning: Continual Learning Approach for Dynamic Environments

Abstract

The feasibility of deep neural networks (DNNs) to address data stream problems still requires intensive study because of the static and offline nature of conventional deep learning approaches. A deep continual learning algorithm, namely autonomous deep learning (ADL), is proposed in this paper. Unlike traditional deep learning methods, ADL features a flexible structure where its network structure can be constructed from scratch with the absence of initial network structure via the self-constructing network structure. ADL specifically addresses catastrophic forgetting by having a different-depth structure which is capable of achieving a trade-off between plasticity and stability. Network significance (NS) formula is proposed to drive the hidden nodes growing and pruning mechanism. Drift detection scenario (DDS) is put forward to signal distributional changes in data streams which induce the creation of a new hidden layer. Maximum information compression index (MICI) method plays an important role as a complexity reduction module eliminating redundant layers. The efficacy of ADL is numerically validated under the prequential test-then-train procedure in lifelong environments using nine popular data stream problems. The numerical results demonstrate that ADL consistently outperforms recent continual learning methods while characterizing the automatic construction of network structures.

Formats available

You can view the full content in the following formats:

Information & Authors

Information

Published In

cover image Proceedings
Proceedings of the 2019 SIAM International Conference on Data Mining
Pages: 666 - 674
Editors: Tanya Berger-Wolf, University of Illinois, USA and Nitesh Chawla, University of Notre Dame
ISBN (Online): 978-1-61197-567-3

History

Published online: 6 May 2019

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Get Access

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media