Abstract

Cuckoo hashing is an efficient technique for creating large hash tables with high space utilization and guaranteed constant access times. There, each item can be placed in a location given by any one out of $k$ different hash functions. In this paper we investigate the random-walk heuristic for inserting in an online fashion new items into the hash table. Provided that $k \ge 3$ and that the number of items in the table is below (but arbitrarily close to) the theoretically achievable load threshold, we show a polylogarithmic bound for the maximum insertion time that holds with probability $1-o(1)$ as the size of the table grows large.

Keywords

  1. information retrieval
  2. hashing
  3. random graphs and hypergraphs

MSC codes

  1. 68Q25
  2. 68Q67
  3. 05C80

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J. Comput., 29 (1999), pp. 180--200.
2.
J. A. Cain, P. Sanders, and N. Wormald, The random graph threshold for $k$-orientability and a fast algorithm for optimal multiple-choice allocation, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, ACM, New York, 2007, pp. 469--476.
3.
A. Coja-Oghlan and A. Taraz, Exact and approximative algorithms for coloring $G(n, p)$, Random Structures Algorithms, 24 (2004), pp. 259--278.
4.
C. Cooper, The cores of random hypergraphs with a given degree sequence, Random Structures Algorithms, 25 (2004), pp. 353--375.
5.
L. Devroye and P. Morin, Cuckoo hashing: Further analysis, Inform. Process. Lett., 86 (2003), pp. 215--219.
6.
M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh, and M. Rink, Tight thresholds for cuckoo hashing via XORSAT, in Proceedings of the 37th International Colloquium on Automata, Languages, and Programming, Springer, Berlin, 2010, pp. 213--225.
7.
M. Dietzfelbinger and C. Weidling, Balanced allocation and dictionaries with tightly packed constant size bins, Theoret. Comput. Sci., 380 (2007), pp. 47--68.
8.
M. Drmota and R. Kutzelnigg, A precise analysis of cuckoo hashing, ACM Trans. Algorithms, 8 (2012), 11.
9.
D. Fernholz and V. Ramachandran, The $k$-orientability thresholds for $G_{n, p}$, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, ACM, New York, 2007, pp. 459--468.
10.
D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis, Space efficient hash tables with worst case constant access time, in Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, Springer, Berlin, 2003, pp. 271--282.
11.
N. Fountoulakis and K. Panagiotou, Orientability of random hypergraphs and the power of multiple choices, in Proceedings of the 37th International Colloquium on Automata, Languages, and Programming, Springer, Berlin, 2010, pp. 348--359.
12.
N. Fountoulakis and K. Panagiotou, Sharp load thresholds for cuckoo hashing, Random Structures Algorithms, 41 (2012), pp. 306--333.
13.
N. Fountoulakis, M. Khosla, and K. Panagiotou, The multiple-orientability thresholds for random hypergraphs, in Proceedings of Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, ACM, New York, 2011, pp. 1222--1236.
14.
A. Frieze and P. Melsted, Maximum matchings in random bipartite graphs and the space utilization of cuckoo hashtables, Random Structures Algorithms, 41 (2012), pp. 334--364.
15.
A. M. Frieze, P. Melsted, and M. Mitzenmacher, An analysis of random-walk cuckoo hashing, SIAM J. Comput., 40 (2011), pp. 291--308.
16.
S. Janson, T. Łuczak, and A. Ruciński, Random Graphs, Wiley-Interscience Ser. Discrete Math. Optim., Wiley-Interscience, New York, 2000.
17.
J. H. Kim, Poisson Cloning Model for Random Graphs, preprint, arXiv:0805.4133, 2008.
18.
M. Mitzenmacher, Some open questions related to cuckoo hashing, in Algorithms---ESA 2009, Lecture Notes in Comput. Sci. 5757, Springer, Berlin, 2009, pp. 1--10.
19.
M. Mitzenmacher, A.W. Richa, and R. Sitaraman, The power of two random choices: A survey of techniques and results, in Handbook of Randomized Computing, Kluwer, Dordrecht, 2001, pp. 255--312.
20.
M. Molloy, Cores in random hypergraphs and boolean formulas, Random Structures Algorithms, 27 (2005), pp. 124--135.
21.
R. Pagh and F. Rodler, Cuckoo hashing, J. Algorithms, 51 (2004), pp. 122--144.
22.
B. Pittel, J. Spencer, and N. Wormald, Sudden emergence of a giant k-core in a random graph, J. Combin. Theory Ser. B, 67 (1996), pp. 111--151.

Information & Authors

Information

Published In

cover image SIAM Journal on Computing
SIAM Journal on Computing
Pages: 2156 - 2181
ISSN (online): 1095-7111

History

Submitted: 7 June 2010
Accepted: 28 August 2013
Published online: 26 November 2013

Keywords

  1. information retrieval
  2. hashing
  3. random graphs and hypergraphs

MSC codes

  1. 68Q25
  2. 68Q67
  3. 05C80

Authors

Affiliations

Konstantinos Panagiotou

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.