Abstract

In this paper, we consider the numerical method for solving the two-dimensional fractional diffusion-wave equation with a time fractional derivative of order $\alpha$ ($1<\alpha<2$). A difference scheme combining the compact difference approach for spatial discretization and the alternating direction implicit (ADI) method in the time stepping is proposed and analyzed. The unconditional stability and $H^1$ norm convergence of the scheme are proved rigorously. The convergence order is $\mathcal {O}(\tau^{3-\alpha}+h_1^4+h^4_2),$ where $\tau$ is the temporal grid size and $h_1,h_2$ are spatial grid sizes in the $x$ and $y$ directions, respectively. In addition, a Crank--Nicolson ADI scheme is presented and the corresponding error estimates are also established. Numerical results are presented to support our theoretical analysis and indicate that the compact ADI scheme reduces the storage requirement and CPU time successfully.

Keywords

  1. fractional diffusion-wave equation
  2. compact ADI scheme
  3. stability
  4. convergence
  5. discrete energy method

MSC codes

  1. 65M06
  2. 65M12
  3. 65M15
  4. 35R11

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
2.
R. Hilfer, ed., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
3.
J. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), pp. 127--293.
4.
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1--77.
5.
T. H. Solomon, E. R. Weeks, and H. L. Swinney, Observations of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow, Phys. Rev. Lett., 71 (1993), pp. 3975--3979.
6.
W. Wyss, Fractional diffusion equation, J. Math. Phys., 27 (1986), pp. 2782--2785.
7.
W. R. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 30 (1989), pp. 134--144.
8.
F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), pp. 23--28.
9.
R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional diffusion: A discrete random walk approach, Nonlinear Dyn., 29 (2002), pp. 129--143.
10.
R. Gorenflo, F. Mainardi, and A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34 (2007), pp. 87--103.
11.
O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam., 29 (2002), pp. 145--155.
12.
S. B. Yuste and L. Acedo, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42 (2005), pp. 1862--1874.
13.
S. B. Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216 (2006), pp. 264--274.
14.
C. M. Chen, F. Liu, I. Turner, and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227 (2007), pp. 886--897.
15.
T. A. M. Langlands and B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205 (2005), pp. 719--736.
16.
P. Zhuang, F. Liu, V. Anh, and I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 46 (2008), pp. 1079--1095.
17.
Z. Z. Sun and X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), pp. 193--209.
18.
E. Cuesta, C. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp., 75 (2006), pp. 673--696.
19.
M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228 (2009), pp. 7792--7804.
20.
R. Du, W. R. Cao, and Z. Z. Sun, A compact difference scheme for the fractional diffusion-wave equation, Appl. Math. Model., 34 (2010), pp. 2998--3007.
21.
C. M. Chen, F. Liu, V. Anh, and I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32 (2010), pp. 1740--1760.
22.
G. H. Gao and Z. Z. Sun, A compact difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), pp. 586--595.
23.
P. Zhuang, F. Liu, V. Anh, and I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009), pp. 1760--1781.
24.
X. Zhao and Z. Z. Sun, A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 230 (2011), pp. 6061--6074.
25.
Y. N. Zhang, Z. Z. Sun, and H. W. Wu, Error estimates of Crank--Nicolson-type difference schemes for the subdiffusion equation, SIAM J. Numer. Anal., 49 (2011), pp. 2302--2322.
26.
Y. Gu, P. Zhuang, and F. Liu, An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation, CMES Comput. Model. Eng. Sci., 56 (2010), pp. 303--333.
27.
Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533--1552.
28.
X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), pp. 2108-2131.
29.
Y. Lin, X. Li, and C. Xu, Finite difference/spectral approximations for the fractional cable equation, Math. Comp., 80 (2011), pp. 1369--1396.
30.
W. Deng, Finite element method for the the space and time fractional Fokker--Planck equation, SIAM J. Numer. Anal., 47 (2008), pp. 204--226.
31.
C. M. Chen, F. Liu, I. Turner, and V. Anh, Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation, Numer. Algorithms, 54 (2010), pp. 1--21.
32.
Y. N. Zhang and Z. Z. Sun, Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys., 230 (2011), pp. 8713--8728.
33.
H. Brunner, L. Ling, and M. Yamamoto, Numerical simulations of 2D fractional subdiffusion problems, J. Comput. Phys., 229 (2010), pp. 6613--6622.
34.
P. Zhuang and F. Liu, Finite difference approximation for two-dimensional time fractional diffusion equation, J. Algorithm Computat. Tech., 1 (2007), pp. 1--15.
35.
C. Chen, F. Liu, V. Anh, and I. Turner, Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation, Math. Comp., 81 (2011), pp. 345--366.
36.
C. Chen and F. Liu, A numerical approximation method for solving a three-dimensional space Galilei invariant fractional advection-diffusion equation, J. Appl. Math. Comput., 30 (2009), pp. 219--236.
37.
Q. Yang, T. Moroney, K. Burrage, I. Turner, and F. Liu, Novel numerical methods for time-space fractional reaction diffusion equations in two dimensions, ANZIAM J. Electron. Suppl., 52 (2010), pp. C395--C409.
38.
Q. Yang, I. Turner, F. Liu, and M. Ilić, Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33 (2011), pp. 1159--1180.
39.
Q. Liu and F. Liu, Modified alternating direction methods for solving a two-dimensional non-continuous seepage flow with fractional derivatives in uniform media, Math. Numer. Sin., 31 (2009), pp. 179--194.
40.
Q. Liu, F. Liu, I. Turner, and V. Anh, Numerical simulation for the three-dimensional seepage flow with fractional derivatives in porous media, IMA J. Appl. Math., 74 (2009), pp. 201--229.
41.
S. Chen and F. Liu, ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation, J. Appl. Math. Comput., 26 (2008), pp. 295--311.
42.
J. C. López-Marcos, A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., 27 (1990), pp. 20--31.
43.
T. Tang, A finite difference scheme for partial integro-differential equations with a weakly singular kernel, Appl. Numer. Math., 11 (1993), pp. 309--319.
44.
A. A. Samarskii and V. B. Andreev, Difference Methods for Elliptic Equation, Nauka, Moscow, 1976.
45.
Z. Z. Sun, The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations, Science Press, Beijing, 2009.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1535 - 1555
ISSN (online): 1095-7170

History

Submitted: 14 July 2011
Accepted: 16 April 2012
Published online: 5 June 2012

Keywords

  1. fractional diffusion-wave equation
  2. compact ADI scheme
  3. stability
  4. convergence
  5. discrete energy method

MSC codes

  1. 65M06
  2. 65M12
  3. 65M15
  4. 35R11

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media