Probabilistic Analysis of Mean-Field Games

The purpose of this paper is to provide a complete probabilistic analysis of a large class of stochastic differential games with mean field interactions. We implement the Mean-Field Game strategy developed analytically by Lasry and Lions in a purely probabilistic framework, relying on tailor-made forms of the stochastic maximum principle. While we assume that the state dynamics are affine in the states and the controls, and the costs are convex, our assumptions on the nature of the dependence of all the coefficients upon the statistical distribution of the states of the individual players remains of a rather general nature. Our probabilistic approach calls for the solution of systems of forward-backward stochastic differential equations of a McKean--Vlasov type for which no existence result is known, and for which we prove existence and regularity of the corresponding value function. Finally, we prove that a solution of the Mean-Field Game problem as formulated by Lasry and Lions, does indeed provide approximate Nash equilibriums for games with a large number of players, and we quantify the nature of the approximation.

  • 1.  M. Bardi, Explicit Solutions of Some Linear Quadratic Mean Field Games, Technical report, Padova University, Padova, Italy, 2011. Google Scholar

  • 2.  A. Bensoussan, K. C. J. Sung, S. C. P. Yam, and S. P. Yung, Linear Quadratic Mean Field Games, Technical report, 2011. Google Scholar

  • 3.  R. Buckdahn J. Li and  S. Peng , Mean-field backward stochastic differential equations and related partial differential equations , Stochastic Process. Appl. , 119 ( 2007 ), pp. 3133 -- 3154 . CrossrefISIGoogle Scholar

  • 4.  R. Buckdahn B. Djehiche J. Li and  S. Peng , Mean-field backward stochastic differential equations: A limit approach , Ann. Probab. , 37 ( 2009 ), pp. 1524 -- 1565 . CrossrefISIGoogle Scholar

  • 5.  P. Cardaliaguet, Notes on Mean Field Games, Technical report, 2010. Google Scholar

  • 6.  R. Carmona and F. Delarue, Forward-Backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics, Technical report, Princeton University and University of Nice, http://hal.archives-ouvertes.fr/hal-00803683. Google Scholar

  • 7.  R. Carmona, F. Delarue, and A. Lachapelle, Control of McKean-Vlasov versus Mean Field Games, Mathematical Financial Economics, to appear. Google Scholar

  • 8.  F. Delarue , On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case , Stochastic Process. Appl. , 99 ( 2002 ), pp. 209 -- 286 . CrossrefISIGoogle Scholar

  • 9.  O. Guéant J. M. Lasry and  P. L. Lions , Mean field games and applications, In R. Carmona et al., eds., Paris Princeton Lectures in Mathematical Finance, Lecture Notes in Math., Springer , Berlin , 2011 , pp. 205 -- 266 . Google Scholar

  • 10.  O. Guéant, J. M. Lasry, and P. L. Lions, Mean field games and oil production, In The Economics of Sustainable Development, Ed. Economica, 2010. Google Scholar

  • 11.  Y. Hu and  S. Peng , Maximum principle for semilinear stochastic evolution control systems , Stochastics Stochastic Rep. , 33 ( 1990 ), pp. 159 -- 180 . CrossrefGoogle Scholar

  • 12.  M. Huang P. E. Caines and  R. P. Malhamé , Individual and mass behavior in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions, Proc. 42nd IEEE Conf. Decision and Control, Maui , Hawaii 2003 , pp. 98 -- 103 . Google Scholar

  • 13.  M. Huang P. E. Caines and  R. P. Malhamé , Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , Commun. Inf. Syst. , 6 ( 2006 ), pp. 221 -- 251 . CrossrefGoogle Scholar

  • 14.  M. Huang P. E. Caines and  R. P. Malhamé , Large population cost coupled LQG problems with nonuniform agents: Individual mass behavior and decentralized $\epsilon$-Nash equilibria , IEEE Trans. Automat. Control , 52 ( 2007 ), pp. 1560 -- 1571 . CrossrefISIGoogle Scholar

  • 15.  B. Jourdain S. Méléard and  W. Woyczynski , Nonlinear SDEs driven by Lévy processes and related PDEs , ALEA Lat. Am. J. Probab. , 4 ( 2008 ), pp. 1 -- 29 . ISIGoogle Scholar

  • 16.  A. Lachapelle, Human Crowds and Groups Interactions: A Mean Field Games Approach, Technical report, CEREMADE, University Paris Dauphine, Paris, France, 2010. Google Scholar

  • 17.  A. Lachapelle and J. M. Lasry, A Mean Field Games Model for the Choice of Insulation Technology of Households, Technical report, CEREMADE, University Paris Dauphine, Paris, France, 2010. Google Scholar

  • 18.  J. M. Lasry and  P. L. Lions , Jeux à champ moyen I. Le cas stationnaire , C. R. Sci. Math. Acad. Paris , 343 ( 2006 ), pp. 619 -- 625 . CrossrefISIGoogle Scholar

  • 19.  J. M. Lasry and  P. L. Lions , Jeux à champ moyen II. Horizon fini et contrôle optimal , C. R. Sci. Math. Acad. Paris , 343 ( 2006 ), pp. 679 -- 684 . CrossrefISIGoogle Scholar

  • 20.  J. M. Lasry and  P. L. Lions , Mean field games , Jpn. J. Math. , 2 ( 2007 ), pp. 229 -- 260 . CrossrefISIGoogle Scholar

  • 21.  J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and their Applications, Lecture Notes in Math. 1702, Springer, Berlin, 2007. Google Scholar

  • 22.  S. Peng and  Z. Wu , Fully coupled forward-backward stochastic differential equations and applications to optimal control , SIAM J. Control Optim. , 37 ( 1999 ), pp. 825 -- 843 . LinkISIGoogle Scholar

  • 23.  H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications, Stoch. Model. Appl. Probab. 61, Springer Verlag, Berlin, 2009. Google Scholar

  • 24.  S. T. Rachev and L. Ruschendorf, Mass Transportation Problems, Vol. I: Theory, Springer-Verlag, New York, 1998. Google Scholar

  • 25.  A. S. Sznitman , Topics in propagation of chaos, Ecole de Probabilités de Saint Flour, D. L. Burkholder et al., Lecture Notes in Math. 1464, Springer , Berlin , 1991 , pp. 165 -- 251 . Google Scholar

  • 26.  J. Yong and X. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Appl. Math. (N.Y.) 43, Springer-Verlag, New York, 1999. Google Scholar