Computational Methods in Science and Engineering

Model Reduction of Descriptor Systems by Interpolatory Projection Methods

Abstract

In this paper, we investigate an interpolatory projection framework for model reduction of descriptor systems. With a simple numerical example, we first illustrate that directly applying the subspace conditions from the standard state space settings to descriptor systems generically leads to unbounded ${{\mathcal H}_2}$ or ${{\mathcal H}_{\infty}}$ errors due to the mismatch of the polynomial parts of the full and reduced-order transfer functions. We then develop modified interpolatory subspace conditions based on the deflating subspaces that guarantee a bounded error. For the special cases of index-$1$ and index-$2$ descriptor systems, we also show how to avoid computing these deflating subspaces explicitly while still enforcing interpolation. The question of how to choose interpolation points optimally naturally arises as in the standard state space setting. We answer this question in the framework of the ${{\mathcal H}_2}$-norm by extending the iterative rational Krylov algorithm to descriptor systems. Several numerical examples are used to illustrate the theoretical discussion.

Keywords

  1. interpolatory model reduction
  2. differential-algebraic equations
  3. $\mathcal{H}_2$ approximation

MSC codes

  1. 41A05
  2. 93A15
  3. 93C05
  4. 37M99

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
G. Alì, N. Banagaaya, W. Schilders, and C. Tischendorf, Index-aware model order reduction for differential-algebraic equations, Math. Comput. Modelling Dynam. Systems.
2.
G. Alì, N. Banagaaya, W. Schilders, and C. Tischendorf, Index-aware model order reduction for linear index-2 DAEs with constant coefficients, SIAM J. Sci. Comput., 35 (2013), pp. A1487--A1510.
3.
A. C. Antoulas, C. A. Beattie, and S. Gugercin, Interpolatory model reduction of large-scale dynamical systems, in Efficient Modeling and Control of Large-Scale Systems, J. Mohammadpour and K. Grigoriadis, eds., Springer-Verlag, New York, 2010, pp. 3--58.
4.
C. A. Beattie and S. Gugercin, Krylov-based minimization for optimal $\mathcal{H}_2$ model reduction, Proceedings of the 46th IEEE Conference on Decision and Control, 2007, pp. 4385--4390.
5.
C. Beattie and S. Gugercin, Interpolatory projection methods for structure-preserving model reduction, Systems Control Lett., 58 (2009), pp. 225--232.
6.
C. A. Beattie and S. Gugercin, A trust region method for optimal $\mathcal{H}_2$ model reduction, Proceeding of the 48th IEEE Conference on Decision and Control, 2009.
7.
P. Benner and V. I. Sokolov, Partial realization of descriptor systems, Systems Control Lett., 55 (2006), pp. 929--938.
8.
A. Bunse-Gerstner, D. Kubalinska, G. Vossen, and D. Wilczek, $\mathcal{H}_2$-optimal model reduction for large scale discrete dynamical MIMO systems, J. Comput. Appl. Math., 233 (2010), pp. 1202--1216.
9.
C. De Villemagne and R. E. Skelton, Model reductions using a projection formulation, Intern. J. Control, 46 (1987), pp. 2141--2169.
10.
P. Feldmann and R. W. Freund, Efficient linear circuit analysis by Padé approximation via the Lanczos process, IEEE Trans. Computer-Aided Design Integr. Circuits Syst., 14 (1995), pp. 639--649.
11.
K. Gallivan, A. Vandendorpe, and P. Van Dooren, Model reduction of MIMO systems via tangential interpolation, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 328--349.
12.
F. R. Gantmacher, Theory of Matrices, Chelsea Publishing, New York, 1959.
13.
E. Grimme, Krylov Projection Methods for Model Reduction, Ph.D. thesis, University of Illinois, Urbana--Champaign, 1997.
14.
S. Gugercin, Projection Methods for Model Reduction of Large-Scale Dynamical Systems, Ph.D. thesis, Rice University, Houston, TX, 2002.
15.
S. Gugercin, An iterative rational Krylov algorithm (IRKA) for optimal $\mathcal{H}_2$ model reduction, in Proceedings of the Householder Symposium XVI, Seven Springs Mountain Resort, PA, 2005.
16.
S. Gugercin and A. C. Antoulas, An $\mathcal{H}_2$ error expression for the Lanczos procedure, in Proceedings of the 42nd IEEE Conference on Decision and Control, 2003.
17.
S. Gugercin, A. C. Antoulas, and C. A. Beattie, A rational Krylov iteration for optimal $\mathcal{H}_2$ model reduction, in Proceedings of 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, 2006.
18.
S. Gugercin, A. C. Antoulas, and C. A. Beattie, $\mathcal{H}_2$ model reduction for large-scale linear dynamical systems, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 609--638.
19.
Y. Halevi, Frequency weighted model reduction via optimal projection, IEEE Trans. Automat. Control, 37 (1992), pp. 1537--1542.
20.
M. Heinkenschloss, D. C. Sorensen, and K. Sun, Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations, SIAM J. Sci. Comput., 30 (2008), pp. 1038--1063.
21.
D. Hyland and D. Bernstein, The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton, and Moore, IEEE Trans. Automat. Control, 30 (1985), pp. 1201--1211.
22.
D. Kubalinska, A. Bunse-Gerstner, G. Vossen, and D. Wilczek, $\mathcal{H}_2$-optimal interpolation based model reduction for large-scale systems, in Proceedings of the $16{\rm th}$ International Conference on System Science, Poland, 2007.
23.
G. Lassaux and K. Willcox, Model reduction of an actively controlled supersonic diffuser, in Dimension Reduction of Large-Scale Systems, P. Benner, V. Mehrmann, and D. C. Sorensen, eds., Lecture Notes in Comput. Sci. Engrg. 45, Springer-Verlag, Berlin, 2005, pp. 357--361.
24.
A. J. Mayo and A. C. Antoulas, A framework for the solution of the generalized realization problem, Linear Algebra Appl., 425 (2007), pp. 634--662.
25.
L. Meier III and D. Luenberger, Approximation of linear constant systems, IEEE Trans. Automat. Control, 12 (1967), pp. 585--588.
26.
J. R. Phillips and L. M. Silveira, Poor man's TBR: A simple model reduction scheme, IEEE Trans. Computer-Aided Design Integr. Circuits Syst., 24 (2006), pp. 43--55.
27.
A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems. II: Matrix pair, Linear Algebra Appl., 197-198 (1994), pp. 282--295.
28.
J. T. Spanos, M. H. Milman, and D. L. Mingori, A new algorithm for $L^2$ optimal model reduction, Automatica, 28 (1992), pp. 897--909.
29.
T. Stykel, Gramian-based model reduction for descriptor systems, Math. Control Signals Syst., 16 (2004), pp. 297--319.
30.
T. Stykel, Low-rank iterative methods for projected generalized Lyapunov equations, Electron. Trans. Numer. Anal., 30 (2008), pp. 187--202.
31.
P. Van Dooren, K. A. Gallivan, and P. A. Absil, $\mathcal{H}_2$-optimal model reduction of MIMO systems, Appl. Math. Lett., 21 (2008), pp. 1267--1273.
32.
D. A. Wilson, Optimum solution of model-reduction problem, Proc. IEE, 117 (1970), pp. 1161--1165.
33.
W. Y. Yan and J. Lam, An approximate approach to $H^2$ optimal model reduction, IEEE Trans. Automat. Control, 44 (1999), pp. 1341--1358.
34.
A. Yousuff and R. E. Skelton, Covariance equivalent realizations with applications to model reduction of large-scale systems, in Control and Dynamic Systems, vol. 22, C.T. Leondes, ed., Academic Press, New York, 1985, pp. 273--348.
35.
A. Yousuff, D. A. Wagie, and R. E. Skelton, Linear system approximation via covariance equivalent realizations, J. Math. Anal. Appl., 196 (1985), pp. 91--115.
36.
D. Zigic, L. T. Watson, and C. Beattie, Contragredient transformations applied to the optimal projection equations, Linear Algebra Appl., 188 (1993), pp. 665--676.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B1010 - B1033
ISSN (online): 1095-7197

History

Submitted: 22 January 2013
Accepted: 11 June 2013
Published online: 26 September 2013

Keywords

  1. interpolatory model reduction
  2. differential-algebraic equations
  3. $\mathcal{H}_2$ approximation

MSC codes

  1. 41A05
  2. 93A15
  3. 93C05
  4. 37M99

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.