Abstract

The two-regime method (TRM) has been recently developed for optimizing stochastic reaction-diffusion simulations [M. Flegg, J. Chapman, and R. Erban, J. Roy. Soc. Interface, 9 (2012), pp. 859--868]. It is a multiscale (hybrid) algorithm which uses stochastic reaction-diffusion models with different levels of detail in different parts of the computational domain. The coupling condition on the interface between different modeling regimes of the TRM was previously derived for one-dimensional models. In this paper, the TRM is generalized to higher dimensional reaction-diffusion systems. Coupling Brownian dynamics models with compartment-based models on regular (square) two-dimensional lattices is studied in detail. In this case, the interface between different modeling regimes contains either flat parts or right-angle corners. Both cases are studied in the paper. For flat interfaces, it is shown that the one-dimensional theory can be used along the line perpendicular to the TRM interface. In the direction tangential to the interface, two choices of the TRM parameters are presented. Their applicability depends on the compartment size and the time step used in the molecular-based regime. The two-dimensional generalization of the TRM is also discussed in the case of corners.

Keywords

  1. stochastic reaction-diffusion simulations
  2. two-regime method
  3. multiscale modeling

MSC codes

  1. 92C40
  2. 82C31
  3. 60G50
  4. 80A30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
F. Alexander, A. Garcia, and D. Tartakovsky, Algorithm refinement for stochastic partial differential equations: I. Linear diffusion, J. Comput. Phys., 182 (2002), pp. 47--66.
2.
M. Ander, P. Beltrao, B. Di Ventura, J. Ferkinghoff-Borg, M. Foglierini, A. Kaplan, C. Lemerle, I. Tomás-Oliveira, and L. Serrano, SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: Analysis of simple networks, Systems Biol., 1 (2004), pp. 129--138.
3.
S. Andrews and D. Bray, Stochastic simulation of chemical reactions with spatial resolution and single molecule detail, Phys. Biol., 1 (2004), pp. 137--151.
4.
S. Engblom, L. Ferm, A. Hellander, and P. Lötstedt, Simulation of stochastic reaction-diffusion processes on unstructured meshes, SIAM J. Sci. Comput., 31 (2009), pp. 1774--1797.
5.
R. Erban and S. J. Chapman, Reactive boundary conditions for stochastic simulations of reaction-diffusion processes, Phys. Biol., 4 (2007), pp. 16--28.
6.
R. Erban and S. J. Chapman, Stochastic modelling of reaction-diffusion processes: Algorithms for bimolecular reactions, Phys. Biol., 6 (2009), p. 046001.
7.
R. Erban, S. J. Chapman, and P. Maini, A Practical Guide to Stochastic Simulations of Reaction-Diffusion Processes, arXiv:0704.1908, 2007.
8.
R. Erban, M. Flegg, and G. Papoian, Multiscale stochastic reaction-diffusion modelling: application to actin dynamics in filopodia, Bull. Math. Biol., 76 (2014), pp. 799--818.
9.
L. Ferm, A. Hellander, and P. Lötstedt, An adaptive algorithm for simulation of stochastic reaction-diffusion processes, J. Comput. Phys., 229 (2010), pp. 343--360.
10.
M. Flegg, J. Chapman, and R. Erban, The two-regime method for optimizing stochastic reaction-diffusion simulations, J. Roy. Soc. Interface, 9 (2012), pp. 859--868.
11.
M. Flegg, S. Rüdiger, and R. Erban, Diffusive spatio-temporal noise in a first-passage time model for intracellular calcium release, J. Chem. Phys., 138 (2013), 154103.
12.
E. Flekkøy, J. Feder, and G. Wagner, Coupling particles and fields in a diffusive hybrid model, Phys. Rev. E, 64 (2001), 066302.
13.
B. Franz, M. Flegg, J. Chapman, and R. Erban, Multiscale reaction-diffusion algorithms: PDE-assisted Brownian dynamics, SIAM J. Appl. Math., 73 (2013), pp. 1224--1247.
14.
T. Geyer, C. Gorba, and V. Helms, Interfacing Brownian dynamics simulations, J. Chem. Phys., 120 (2004), pp. 4573--4580.
15.
M. Gibson and J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels, J. Phys. Chem. A, 104 (2000), pp. 1876--1889.
16.
D. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81 (1977), pp. 2340--2361.
17.
D. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys., 115 (2001), pp. 1716--1733.
18.
C. Gorba, T. Geyer, and V. Helms, Brownian dynamics simulations of simplified cytochrome c molecules in the presence of a charged surface, J. Chem. Phys., 121 (2004), pp. 457--464.
19.
J. Hattne, D. Fange, and J. Elf, Stochastic reaction-diffusion simulation with MesoRD, Bioinformatics, 21 (2005), pp. 2923--2924.
20.
A. Hellander, S. Hellander, and P. Lötstedt, Coupled mesoscopic and microscopic simulation of stochastic reaction-diffusion processes in mixed dimensions, Multiscale Model. Simul., 10 (2012), pp. 585--611.
21.
S. Isaacson, A convergent reaction-diffusion master equation, J. Chem. Phys., 139 (2013), 054101.
22.
S. Khokhlova and N. Agmon, Green's function for reversible geminate reaction with volume reactivity, J. Chem. Phys., 137 (2012), 184103.
23.
M. Klann, A. Ganguly, and H. Koeppl, Hybrid spatial Gillespie and particle tracking simulation, Bioinformatics, 28 (2012), pp. i549--i555.
24.
J. Lipková, K. Zygalakis, J. Chapman, and R. Erban, Analysis of Brownian dynamics simulations of reversible bimolecular reactions, SIAM J. Appl. Math., 71 (2011), pp. 714--730.
25.
K. Lipkow, S. Andrews, and D. Bray, Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli, J. Bacteriol., 187 (2005), pp. 45--53.
26.
E. Moro, Hybrid method for simulating front propagation in reaction-diffusion systems, Phys. Rev. E, 69 (2004), 060101.
27.
S. Andrews and D. Bray, First-passage kinetic monte carlo method, Phys. Rev. E, 80 (2009), 066701.
28.
J. Stiles and T. Bartol, Monte Carlo methods for simulating realistic synaptic microphysiology using MCell, in Computational Neuroscience: Realistic Modeling for Experimentalists, E. Schutter, ed., CRC Press, Boca Raton, FL, 2001, pp. 87--127.
29.
K. Takahashi, S. Tanase-Nicola, and P. ten Wolde, Spatio-temporal correlations can drastically change the response of a mapk pathway, Proc. Natl. Acad. Sci. USA, 107 (2010), pp. 19820--19825.
30.
W. van Gunsteren and H. Berendsen, Algorithms for Brownian dynamics, Molecular Phys., 45 (1982), pp. 637--647.
31.
N. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed., North-Holland, Amsterdam, 2007.
32.
J. van Zon and P. ten Wolde, Green's-function reaction dynamics: A particle-based approach for simulating biochemical networks in time and space, J. Chem. Phys., 123 (2005), 234910.
33.
G. Wagner and E. Flekkøy, Hybrid computations with flux exchange, Philos. Trans. R. Soc. London Ser. A Math. Phys. Eng. Sci., 362 (2004), pp. 1655--1665.
34.
S. Wils and E. De Schutter, STEPS: Modeling and simulating complex reaction-diffusion systems with Python, Front. Neuroinformatics, 3 (2009), pp. 1--8.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B561 - B588
ISSN (online): 1095-7197

History

Submitted: 5 April 2013
Accepted: 4 March 2014
Published online: 17 June 2014

Keywords

  1. stochastic reaction-diffusion simulations
  2. two-regime method
  3. multiscale modeling

MSC codes

  1. 92C40
  2. 82C31
  3. 60G50
  4. 80A30

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media