Abstract

An optimal control problem of static plasticity with linear kinematic hardening and von Mises yield condition is studied. The problem is treated in its primal formulation, where the state system is a variational inequality of the second kind. First-order necessary optimality conditions are obtained by means of an approximation by a family of control problems with state system regularized by Huber-type smoothing, and a subsequent limit analysis. The equivalence of the optimality conditions with the C-stationarity system for the equivalent dual formulation of the problem is proved. Numerical experiments are presented, which demonstrate the viability of the Huber-type smoothing approach.

Keywords

  1. optimal control
  2. first-order necessary optimality conditions
  3. mathematical program with equilibrium constraints (MPEC)
  4. variational inequality of the second kind
  5. elastoplasticity

MSC codes

  1. 68Q25
  2. 68R10
  3. 68U05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. Alberty, C. Carstensen, and D. Zarrabi, Adaptive numerical analysis in primal elastoplasticity with hardening, Comput. Methods App. Mech. Eng., 171 (1999), pp. 175--204, https://doi.org/10.1016/S0045-7825(98)00210-2
2.
M. S. Aln\aes, UFL: a finite element form language, in Automated Solution of Differential Equations by the Finite Element Method, Lect. Notes Comput. Sci. Eng. 84, A. Logg, K.-A. Mardal, and G. N. Wells, eds., Springer, Heidelberg, 2012, pp. 303--338.
3.
V. Barbu, Optimal Control of Variational Inequalities, Res. Notes Math, 100, Pitman, Boston, 1984.
4.
S. Bartels and T. Roubíček, Thermoviscoplasticity at small strains, Z. Angew. Math. Mech., 88 (2008), pp. 735--754.
5.
T. Betz and C. Meyer, Second-order sufficient conditions for optimal control of static elastoplasticity with hardening, ESAIM Control Optim. Calc. Var., 21 (2015), pp. 271--300.
6.
F. Bonnans and E. Casas, An extension of Pontryagin's principle for state-constrained optimal control of semilinear elliptic equations and variational inequalities, SIAM J. Control Optim., 33 (1995), pp. 274--298, https://doi.org/10.1137/S0363012992237777
7.
F. Bonnans and D. Tiba, Pontryagin's principle in the control of semilinear elliptic variational inequalities, Appl. Math. Optim., 23 (1991), pp. 299--312, https://doi.org/10.1007/BF01442403
8.
J. C. de los Reyes, Optimal control of a class of variational inequalities of the second kind, SIAM J. Control Optim., 49 (2011), pp. 1629--1658, https://doi.org/10.1137/090764438
9.
J. C. de los Reyes, Optimization of mixed variational inequalities arising in flow of viscoplastic materials, Comput. Optim. Appl., 52 (2012), pp. 757--784, https://doi.org/10.1007/s10589-011-9435-x
10.
J. C. de los Reyes, R. Herzog, and C. Meyer, Optimal Control of Static Elastoplasticity in Primal Formulation, Technical report SPP1253-151, Priority Program 1253, German Research Foundation, 2013, http://www.am.uni-erlangen.de/home/spp1253/wiki/index.php/Preprints.
11.
H. Goldberg, W. Kampowsky, and F. Tröltzsch, On Nemytskij operators in $L_p$-spaces of abstract functions, Math. Nachr., 155 (1992), pp. 127--140, https://doi.org/10.1002/mana.19921550110
12.
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
13.
K. Gröger, A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283 (1989), pp. 679--687, https://doi.org/10.1007/BF01442860
14.
R. Haller-Dintelmann, C. Meyer, J. Rehberg, and A. Schiela, Hölder continuity and optimal control for nonsmooth elliptic problems, Appl. Math. Optim., 60 (2009), pp. 397--428, https://doi.org/10.1007/s00245-009-9077-x
15.
W. Han and B. D. Reddy, Convergence analysis of discrete approximations of problems in hardening plasticity, Comput. Methods Appl. Mech. Eng., 171 (1999), pp. 327--340, https://doi.org/10.1016/S0045-7825(98)00214-X
16.
W. Han and B. D. Reddy, Plasticity, Springer, New York, 1999.
17.
R. Herzog and C. Meyer, Optimal control of static plasticity with linear kinematic hardening, J. Appl. Math. Mech., 91 (2011), pp. 777--794, https://doi.org/10.1002/zamm.200900378
18.
R. Herzog, C. Meyer, and G. Wachsmuth, Existence and regularity of the plastic multiplier in static and quasistatic plasticity, GAMM-M.TT., 34 (2011), pp. 39--44, https://doi.org/10.1002/gamm.201110006
19.
R. Herzog, C. Meyer, and G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions, J. Math. Anal. Appl., 382 (2011), pp. 802--813, https://doi.org/10.1016/j.jmaa.2011.04.074
20.
R. Herzog, C. Meyer, and G. Wachsmuth, C-stationarity for optimal control of static plasticity with linear kinematic hardening, SIAM J. Control Optim., 50 (2012), pp. 3052--3082, https://doi.org/10.1137/100809325
21.
M. Hintermüller and I. Kopacka, Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm, SIAM J. Optim., 20 (2009), pp. 868--902, https://doi.org/10.1137/080720681
22.
M. Hintermüller and I. Yousept, A sensitivity-based extrapolation technique for the numerical solution of state-constrained optimal control problems, ESAIM Control Optim. Calc. Var., 16 (2010), pp. 503--522.
23.
P. J. Huber, Robust regression: asymptotics, conjectures and Monte Carlo, Ann. Statist., 1 (1973), pp. 799--821.
24.
P. J. Huber, Robust Statistics, Wiley Ser. Probab. Math. Stat., Wiley, New York, 1981.
25.
K. Kunisch and D. Wachsmuth, Path-following for optimal control of stationary variational inequalities, Comput. Optim. Appl., 51 (2011), pp. 1345--1373.
26.
A. Logg, K.-A. Mardal, G. N. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer, Heidelberg, FEniCS 2012, https://doi.org/10.1007/978-3-642-23099-8 -23099-8.
27.
A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, Ffc: the FEniCS form compiler, in Automated Solution of Differential Equations by the Finite Element Method, Lect. Notes Comput. Sci. Eng. 84, A. Logg, K.-A. Mardal, and G. N. Wells, eds., Springer, Heidelberg, 2012, pp. 227--238.
28.
F. Mignot and J. P. Puel, Optimal control in some variational inequalities, SIAM J. Control Optim., 22 (1984), pp. 466--476, https://doi.org/10.1137/0322028
29.
OPTPDE --- A Collection of Problems in PDE-Constrained Optimization, http://www.optpde.net.
30.
H. Scheel and S. Scholtes, Mathematical programs with complementarity constraints: Stationarity, Optimality, and sensitivity, Math. Oper. Res., 25 (2000), pp. 1--22, https://doi.org/10.1287/moor.25.1.1.15213
31.
R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Montrouge, France, 1983.
32.
F. Tröltzsch, Optimal Control of Partial Differential Equations, Grad. Stud. Math., AMS, Providence, RI, 2010.
33.
G. Wachsmuth, Differentiability of implicit functions: Beyond the implicit function theorem, J. Math. Anal. Appl., 414 (2014), pp. 259--272.
34.
L. Wenbin and J. E. Rubio, Maximum principles for optimal controls for elliptic variational inequalities of the second kind, IMA J. Math. Control Inform., 8 (1991), pp. 211--230, https://doi.org/10.1093/imamci/8.3.211

Information & Authors

Information

Published In

cover image SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization
Pages: 3016 - 3039
ISSN (online): 1095-7138

History

Submitted: 13 May 2013
Accepted: 14 September 2016
Published online: 10 November 2016

Keywords

  1. optimal control
  2. first-order necessary optimality conditions
  3. mathematical program with equilibrium constraints (MPEC)
  4. variational inequality of the second kind
  5. elastoplasticity

MSC codes

  1. 68Q25
  2. 68R10
  3. 68U05

Authors

Affiliations

Juan Carlos de los Reyes

Funding Information

Deutsche Forschungsgemeinschaft http://doi.org/10.13039/501100001659 : SPP1253

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media