2D Empirical Transforms. Wavelets, Ridgelets, and Curvelets Revisited

A recently developed approach, called “empirical wavelet transform,” aims to build one-dimensional (1D) adaptive wavelet frames accordingly to the analyzed signal. In this paper, we present several extensions of this approach to two-dimensional (2D) signals (images). We revisit some well-known transforms (tensor wavelets, Littlewood--Paley wavelets, ridgelets, and curvelets) and show that it is possible to build their empirical counterparts. We prove that such constructions lead to different adaptive frames which show some promising properties for image analysis and processing.

  • 1.  A. Averbuch R. R. Coifman D. L. Donoho M. Elad and  M. Israeli , Fast and accurate polar Fourier transform , Appl. Comput. Harmon. Anal. , 21 ( 2006 ), pp. 145 -- 167 . CrossrefISIGoogle Scholar

  • 2.  A. Averbuch R. R. Coifman D. L. Donoho M. Israeli and  Y. Shkolnisky , A framework for discrete integral transformations I---the pseudopolar Fourier transform , SIAM J. Sci. Comput. , 30 ( 2008 ), pp. 764 -- 784 . LinkISIGoogle Scholar

  • 3.  L. Borup and  M. Nielsen , Approximation with brushlet systems , J. Approx. Theory , 123 ( 2003 ), pp. 25 -- 51 . CrossrefISIGoogle Scholar

  • 4.  J.-F. Cai H. Ji C.-Q. Liu and  Z. Shen , Blind motion deblurring from a single image using sparse approximation , in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , Miami, FL , 2009 , pp. 104 -- 111 . Google Scholar

  • 5.  J.-F. Cai S. Osher and  Z. Shen , Linearized Bregman iterations for frame-based image deblurring , SIAM J. Imaging Sci. , 2 ( 2009 ), pp. 226 -- 252 . LinkISIGoogle Scholar

  • 6.  J.-F. Cai S. Osher and  Z. Shen , Split Bregman methods and frame based image restoration , Multiscale Model. Simul. , 8 ( 2009 ), pp. 337 -- 369 . LinkISIGoogle Scholar

  • 7.  E. J. Candès : Estimating with ridge functions , Ann. Statist. , 31 ( 2003 ), pp. 1561 -- 1599 . CrossrefISIGoogle Scholar

  • 8.  E. J. Candès , Ridgelets: Theory and Applications , Ph.D. Thesis, Department of Statistics , Stanford University , Stanford, CA, 1998 . Google Scholar

  • 9.  E. J. Candès and  D. L. Donoho , Continuous curvelet transform, part I: Resolution of the wavefront set , Appl. Comput. Harmon. Anal. , 19 ( 2003 ), pp. 162 -- 197 . CrossrefISIGoogle Scholar

  • 10.  E. J. Candès and  D. L. Donoho , Continuous curvelet transform, part II: Discretization and frames , Appl. Comput. Harmon. Anal. , 19 ( 2003 ), pp. 198 -- 222 . CrossrefISIGoogle Scholar

  • 11.  E. J. Candès L. Demanet D. L. Donoho and  L. Ying , Fast discrete curvelet transforms , Multiscale Model. Simul. , 5 ( 2006 ), pp. 861 -- 899 . LinkISIGoogle Scholar

  • 12.  C. Damerval S. Meignen and  V. Perrier , A fast algorithm for bidimensional EMD , IEEE Signal Process. Lett. , 12 ( 2005 ), pp. 701 -- 704 . CrossrefISIGoogle Scholar

  • 13.  I. Daubechies , Ten Lectures on Wavelets , CBMS--NSF Regional Conf. Ser. in Appl. Math. 61 , SIAM , Philadelphia , 1992 . Google Scholar

  • 14.  J. Delon A. Desolneux J. L. Lisani and  A. B. Petro , A nonparametric approach for histogram segmentation , IEEE Trans. Image Process. , 16 ( 2007 ), pp. 253 -- 261 . CrossrefISIGoogle Scholar

  • 15.  A. Desolneux L. Moisan and  J.-M. Morel , From Gestalt Theory to Image Analysis: A Probabilistic Approach , Interdiscip. Appl. Math. 34 , Springer-Verlag , New York , 2008 . Google Scholar

  • 16.  D. L. Donoho , Ridge functions and orthonormal ridgelets , J. Approx. Theory , 111 ( 1998 ), pp. 143 -- 179 . CrossrefISIGoogle Scholar

  • 17.  J. Gilles , Empirical wavelet transform , IEEE Trans. Signal Process. , 61 ( 2013 ), pp. 3999 -- 4010 . CrossrefISIGoogle Scholar

  • 18.  L. Grafakos and  W. Arber , Classical Fourier Analysis , 2 nd ed., Current Topics in Microbiology and Immunology, Springer-Verlag New York , 2008 . Google Scholar

  • 19.  N. E. Huang Z. Shen S. R. Long M. C. Wu H. H. Shih Q. Zheng N.-C. Yen C. C. Tung and  H. H. Liu , The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , Proc. Roy. Soc. Lond. A , 454 ( 1998 ), pp. 903 -- 995 . CrossrefISIGoogle Scholar

  • 20.  E. Le Pennec and  S. Mallat , Bandelet image approximation and compression , Multiscale Model. Simul. , 4 ( 2005 ), pp. 992 -- 1039 . LinkISIGoogle Scholar

  • 21.  E. Le Pennec and  S. Mallat , Sparse geometric image representations with bandelets , IEEE Trans. Image Process. , 14 ( 2005 ), pp. 423 -- 438 . CrossrefISIGoogle Scholar

  • 22.  S. Mallat and  Geometrical , Appl. Comput. Harmon. Anal. , 26 ( 2009 ), pp. 161 -- 180 . CrossrefISIGoogle Scholar

  • 23.  F. G. Meyer and  R. R. Coifman , Brushlets: A tool for directional image analysis and image compression , Appl. Comput. Harmon. Anal. , 4 ( 1997 ), pp. 147 -- 187 . CrossrefISIGoogle Scholar

  • 24.  J. C. Nunes Y. Bouaoune E. Deléchelle N. Oumar and  P. Bunel , Image analysis by bidimensional empirical mode decomposition , Image Vision Comput. J. , 21 ( 2003 ), pp. 1019 -- 1026 . CrossrefISIGoogle Scholar

  • 25.  G. Peyré and  S. Mallat , Discrete bandelets with geometric orthogonal filters , in Proceedings of the International Conference on Image Processing (ICIP) , 2005 , pp. 65 -- 68 . Google Scholar

  • 26.  J. P. Serra , Image Analysis and Mathematical Morphology , Image Anal. Math. Morphology 1 , Academic Press , New York , 1982 . Google Scholar

  • 27.  Z. Shen , Wavelet frames and image restorations , in Proceedings of the International Congress of Mathematicians , Vol. 4 , R. Bhatia ed. , 2010 , pp. 2834 -- 2863 . Google Scholar

  • 28.  P. Soille , Morphological Image Analysis , Springer-Verlag , Berlin , 1999 . Google Scholar

  • 29.  J. L. Starck M. Elad and  D. L. Donoho , Image decomposition via the combination of sparse representation and a variational approach , IEEE Trans. Image Process. , 14 ( 2005 ), pp. 1570 -- 1582 . CrossrefISIGoogle Scholar

  • 30.  Z. Wang A. C. Bovik H. R. Sheikh and  E. P. Simoncelli , Image quality assessment: From error visibility to structural similarity , IEEE Trans. Image Process. , 13 ( 2004 ), pp. 600 -- 612 . CrossrefISIGoogle Scholar