Abstract

In this paper, we study a few theoretical issues in the discretized Kohn--Sham (KS) density functional theory. The equivalence between either a local or global minimizer of the KS total energy minimization problem and the solution to the KS equation is established under certain assumptions. The nonzero charge densities of a strong local minimizer are shown to be bounded from below by a positive constant uniformly. We analyze the self-consistent field (SCF) iteration by formulating the KS equation as a fixed point map with respect to the potential. The Jacobian of these fixed point maps is derived explicitly. Both global and local convergence of the simple mixing scheme can be established if the gap between the occupied states and unoccupied states is sufficiently large. This assumption can be relaxed in certain cases. Numerical experiments based on the MATLAB toolbox KSSOLV show that it holds on a few simple examples. Although our assumption on the gap is very stringent, our analysis is still valuable for a better understanding of the KS minimization problem, the KS equation, and the SCF iteration.

Keywords

  1. Kohn--Sham total energy minimization
  2. Kohn--Sham equation
  3. self-consistent field iteration
  4. nonlinear eigenvalue problem

MSC codes

  1. 15A18
  2. 65F15
  3. 47J10
  4. 90C30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. L. Adler, Quantum theory of the dielectric constant in real solids, Phys. Rev. (2), 126 (1962), pp. 413--420.
2.
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000.
3.
C. Le Bris, Computational chemistry from the perspective of numerical analysis, Acta Numer., 14 (2005), pp. 363--444.
4.
E. Cancès, SCF algorithms for HF electronic calculations, in Mathematical Models and Methods for Ab Initio Quantum Chemistry, Lect. Notes in Chem. 74, Springer, Berlin, 2000, pp. 17--43.
5.
E. Cancès, Self-consistent field algorithms for Kohn--Sham models with fractional occupation numbers, J. Chem. Phys., 114 (2001), pp. 10616--10622.
6.
E. Cancès and C. Le Bris, Can we outperform the DIIS approach for electronic structure calculations?, Int. J. Quantum Chem., 79 (2000), pp. 82--90.
7.
E. Cancès and C. Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations, M2AN Math. Model. Numer. Anal., 34 (2000), pp. 749--774.
8.
E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris, and Y. Maday, Computational quantum chemistry: A primer, in Handbook of Numerical Analysis. Vol. X: Special Volume: Computational Chemistry, Ph. Ciarlet and C. Le Bris, eds., North-Holland, 2003, pp. 3--270.
9.
E. Cancès and K. Pernal, Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations, J. Chem. Phys., 128 (2008), pp. 108--134.
10.
H. Chen, X. Dai, X. Gong, L. He, and A. Zhou, Adaptive finite element approximations for Kohn--Sham models, Multiscale Model. Simul. 12 (2014), pp. 1828--1869.
11.
H. Chen, X. Gong, L. He, Z. Yang, and A. Zhou, Numerical analysis of finite dimensional approximations of Kohn--Sham models, Adv. Comput. Math., 38 (2013), pp. 225--256.
12.
X. Chen, H. Qi, and P. Tseng, Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementarity problems, SIAM J. Optim., 13 (2003), pp. 960--985.
13.
X. Dai, X. Gong, Z. Yang, D. Zhang, and A. Zhou, Finite volume discretizations for eigenvalue problems with applications to electronic structure calculations, Multiscale Model. Simul., 9 (2011), pp. 208--240.
14.
X. Dai, Z. Yang, and A. Zhou, Symmetric finite volume schemes for eigenvalue problem in arbitrary dimensions, Sci. China Ser. A., 51 (2008), pp. 1401--1414.
15.
C. Ding, An Introduction to a Class of Matrix Optimization Problems, Ph.D. thesis, National University of Singapore, Singapore, 2012.
16.
D. Drusvyatskiy and A. S. Lewis, Tilt stability, uniform quadratic growth, and strong metric regularity of the subdifferential, SIAM J. Optim., 23 (2013), pp. 256--267.
17.
W. Gao, C. Yang, and J. Meza, Solving a class of nonlinear eigenvalue problems by Newton's method, Technical report LBNL-2187 E, Lawrence Berkeley National Laboratory, Berkeley, CA, 2009.
18.
G. P. Kerker, Efficient iteration scheme for self-consistent pseudopotential calculations, Phys. Rev. B (3), 23 (1981), pp. 3082--3084.
19.
J. Koutecký and V. Bonacic, On the convergence difficulties in the iterative Hartree-Fock procedure, J. Chem. Phys., 55 (1971), pp. 2408--2413.
20.
G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6 (1996), pp. 15--50.
21.
K. N. Kudin, G. E. Scuseria, and E. Cancès, A black-box self-consistent field convergence algorithm: One step closer, J. Chem. Phys., 116 (2002), pp. 8255--8261.
22.
A. Levitt, Convergence of gradient-based algorithms for the Hartree-Fock equations, ESAIM: Math. Model. Numer. Anal., 46 (2012), pp. 1321--1336.
23.
A. S. Lewis and H. S. Sendov, Twice differentiable spectral functions, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 368--386.
24.
L. Lin and C. Yang, Elliptic preconditioner for accelerating the self consistent field iteration in Kohn--Sham density functional theory. SIAM J. Sci. Comput., 35 (2013), pp. S277--S298.
25.
X. Liu, X. Wang, Z. Wen, and Y. Yuan, On the Convergence of the Self-Consistent Field Iteration in Kohn--Sham Density Functional Theory, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 546--558.
26.
J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, 2006.
27.
R. Schneider, T. Rohwedder, A. Neelov, and J. Blauert, Direct minimization for calculating invariant subspaces in density functional computations of the electronic structure, J. Comput. Math., 27 (2009), pp. 360--393.
28.
A. Shapiro, On Differentiability of Symmetric Matrix Valued Functions, preprint, optimization online:2002/07/499, 2002.
29.
M. Torki, Second-order directional derivatives of all eigenvalues of a symmetric matrix, Nonlinear Anal., 46 (2001), pp. 1133--1150.
30.
Z. Wen, A. Milzarek, M. Ulbrich, and H. Zhang, Adaptive regularized self-consistent field iteration with exact Hessian for electronic structure calculation, SIAM J. Sci. Comput., 35 (2013), pp. A1299--A1324.
31.
N. Wiser, Dielectric constant with local field effects included, Phys. Rev. (2), 129 (1963), pp. 62--69.
32.
C. Yang, W. Gao, and J. C. Meza, On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl., 30 (2009), pp. 1773--1788.
33.
C. Yang, J. C. Meza, B. Lee, and L.-W. Wang, KSSOLV---a MATLAB toolbox for solving the Kohn--Sham equations, ACM Trans. Math. Software, 36 (2009), 10.
34.
L.-H. Zhang and R.-C. Li, Maximization of the sum of the trace ratio on the Stiefel manifold, I: Theory, Science China Math., 57 (2014), pp. 2495--2508.
35.
L.-H. Zhang and R.-C. Li, Maximization of the sum of the trace ratio on the Stiefel manifold, II: Computation, Science China Math., 58 (2015), pp. 1549--1566.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1758 - 1785
ISSN (online): 1095-7170

History

Submitted: 21 February 2014
Accepted: 22 May 2015
Published online: 14 July 2015

Keywords

  1. Kohn--Sham total energy minimization
  2. Kohn--Sham equation
  3. self-consistent field iteration
  4. nonlinear eigenvalue problem

MSC codes

  1. 15A18
  2. 65F15
  3. 47J10
  4. 90C30

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media