Abstract

The displacement field near a tip of a finite crack, due to the diffraction of a wave on a square lattice, is studied. The finite section method, in the theory of Toeplitz operators on $\ell_2$, is invoked as the semi-infinite crack diffraction problem is shown equivalent to the inversion of a Toeplitz operator, a truncation of which appears in the finite crack diffraction problem for the same incident wave. The existence and uniqueness of the solution in $\ell_2$ for the semi-infinite crack problem is established by an application of the well-known Krein conditions. Continuum limit of the semi-infinite crack diffraction problem is established in a discrete Sobolev space; a graphical illustration of convergence in the relevant Sobolev norm is also included. A low-frequency asymptotic approximation of the normalized shear force, in “vertical” bonds ahead of the crack tip, recovers the classical crack tip singularity. Displacement of particles in the vicinity of the crack tip, a closed form expression of which is provided, is compared graphically with that obtained by a numerical solution of the diffraction problem on a finite grid. Graphical results are also included to demonstrate that the normalized shear force in “horizontal” bonds, along the crack face, approaches the corresponding stress component in the continuum model at sufficiently low frequency. Numerical solutions indicate that the crack opening displacement of a semi-infinite crack approximates that of a finite crack of sufficiently large size, and at sufficiently high frequency of incident wave, away from the neighborhood of the other crack tip, while it differs significantly for low frequencies as a result of multiple scattering due to the two crack tips.

Keywords

  1. diffraction
  2. crack
  3. lattice
  4. Wiener--Hopf
  5. Toeplitz
  6. finite section

MSC codes

  1. 78A45
  2. 39A14
  3. 47A40
  4. 74S20
  5. 74J20
  6. 45E10
  7. 47B35
  8. 37L60

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Government Printing Office, Washington, DC, 1964; available online from http://people.math.sfu.ca/ cbm/aands/abramowitz_and_stegun.pdf.
2.
J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1973.
3.
R. A. Adams, Sobolev Spaces, Academic Press, New York, San Francisco, London, 1975.
4.
K. Ando, H. Isozaki, and H. Morioka, Spectral Properties of Schrödinger Operators on Perturbed Lattices, preprint, arXiv:1408.2076v2, http://arxiv-web3.library.cornell.edu/pdf/1408.2076.pdf, 2015.
5.
D. D. Ang and L. Knopoff, Diffraction of scalar elastic waves by a finite crack, Proc. Natl. Acad. Sci. USA, 51 (1964), pp. 593--598.
6.
X. Blanc, C. L. Bris, and P.-L. Lions, From molecular models to continuum mechanics, Arch. Ration. Mech. Anal., 164 (2002), pp. 341--381.
7.
A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, 2nd ed., Springer, Cambridge, UK, 2006.
8.
C. J. Bouwkamp, Diffraction theory, Rep. Prog. Phys., 17 (1954), pp. 35--100.
9.
A. Braides and M. Gelli, Continuum limits of discrete systems without convexity hypotheses, Math. Mech. Solids, 7 (2002), pp. 41--66.
10.
F. M. Burdekin and D. E. W. Stone, The crack opening displacement approach to fracture mechanics in yielding materials, J. Strain Anal. Engrg. Design, 1 (1966), pp. 145--153.
11.
A. Calderón, F. Spitzer, and H. Widom, Inversion of Toeplitz matrices, Illinois J. Math., 3 (1959), pp. 490--498.
12.
L. G. Chambers, Diffraction by a half plane, Proc. Edinburgh Math. Soc. (2), 10 (1954), pp. 92--99.
13.
L. Collatz, The Numerical Treatment of Differential Equations, 3rd ed., Springer-Verlag, Berlin, 1960.
14.
E. T. Copson, On an integral equation arising in the theory of diffraction, Quart. J. Math., 17 (1946), pp. 19--34.
15.
E. N. Economou, Green's Functions in Quantum Physics, 2nd ed., Springer, Berlin, 1983.
16.
P. S. Epstein, Über Die Beugung an Einem Ebenen Schirm Unter Berucksichtigung des Materialeinflusses, Ph.D. thesis, Munich, Germany, 1914.
17.
A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions. Vol. II, based on notes left by H. Bateman, Robert E. Krieger Publishing, Melbourne, FL, 1981.
18.
Y. N. Fel'd, Diffraction of electromagnetic waves on a semi-infinite grating, Radiotekhn. i Elektron., 3 (1958), pp. 882--884 (in Russian).
19.
I. Gohberg and I. Feldman, Convolution Equations and Projection Methods for Their Solutions, Math. Monogr. 41, AMS, Providence, RI, 1974.
20.
W. Hackbusch, On the regularity of difference schemes, Ark. Mat., 19 (1981), pp. 71--95.
21.
A. E. Heins and S. Silver, The edge conditions and field representation theorems in the theory of electromagnetic diffraction, Proc. Camb. Philos. Soc., 51 (1965), pp. 149--161.
22.
F. Hiroshima, I. Sasaki, T. Shirai, and A. Suzuki, Note on the spectrum of discrete Schrödinger operators, J. Math-for-Ind., 4B (2012), pp. 105--108.
23.
D. S. Jones, A simplifying technique in the solution of a class of diffraction problems, Quart. J. Math. Oxford Ser. (2), 3 (1952), pp. 189--196.
24.
D. S. Jones, The Theory of Electromagnetism, Macmillan, New York, 1964.
25.
E. I. Jury, Theory and Application of the z-Transform Method, John Wiley, New York, 1964.
26.
S. Karp, Diffraction by finite and infinite gratings, Phys. Rev., 86 (1952), pp. 586--601.
27.
S. Katsura and S. Inawashiro, Lattice Green's functions for the rectangular and the square lattices at arbitrary points, J. Math. Phys., 12 (1971), pp. 1622--1630.
28.
M. G. Krein, Integral equations on a half-line with kernel depending upon the difference of the arguments, Amer. Math. Soc. Transl. Ser. 2, 22 (1962), pp. 163--288.
29.
H. Lamb, On Sommerfeld's diffraction problem and on reflection by a parabolic mirror, Proc. London Math. Soc., 4 (1907), pp. 190--203.
30.
P. D. Lax and A. N. Milgram, Parabolic equations, in Contributions to the Theory of Partial Differential Equations, Ann. Math. Stud. 33, Princeton University Press, Princeton, NJ, 1954, pp. 167--190.
31.
H. Levine and J. S. Schwinger, On the radiation of sound from an unflanged circular pipe, Phys. Rev., 73 (1948), pp. 383--406.
32.
A. A. Maradudin, Screw dislocations and discrete elastic theory, J. Phys. Chem. Solids, 9 (1958), pp. 1--20.
33.
A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation, 2nd ed., Academic Press, New York, 1971.
34.
P. A. Martin, Discrete scattering theory: Green's function for a square lattice, Wave Motion, 43 (2006), pp. 619--629.
35.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II, McGraw-Hill, New York, Toronto, London, 1953.
36.
G. Nishimura and Y. Jimbo, A dynamic problem of stress concentration: Stresses in the vicinity of a spherical matter included in an elastic solid under dynamic force, J. Faculty Engrg., University of Tokyo, Japan, 24 (1955), p. 101.
37.
B. Noble, Methods Based on the Wiener--Hopf Technique, Pergamon Press, London, 1958.
38.
R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, AMS, Providence, RI, 1934.
39.
S. O. Rice, Diffraction of a plane radio wave by a parabolic cylinder, Bell System Tech. J., 33 (1954), pp. 417--504.
40.
L. Robin, Diffraction d'une onde cylindrique par un c'ylindre parabolique, Annales des Telecom, 19 (1964), pp. 257--269.
41.
W. Shaban and B. Vainberg, Radiation conditions for the difference Schrödinger operators, Appl. Anal., 80 (2001), pp. 525--556.
42.
B. L. Sharma, Continuum Limit of Some Discrete Sommerfeld Problems, unpublished, 2015.
43.
B. L. Sharma, Diffraction of waves on square lattice by semi-infinite crack, SIAM J. Appl. Math., 75 (2015), pp. 1171--1192;
44.
B. L. Sharma, Diffraction of waves on square lattice by semi-infinite rigid constraint, submitted.
45.
B. L. Sharma, Discrete Sommerfeld diffraction problems on hexagonal lattice with a zigzag semi-infinite crack and rigid constraint, Z. Angew. Math. Phys., to appear.
46.
B. L. Sharma, Near-tip field for diffraction on square lattice by rigid constraint, Z. Angew. Math. Phys., 2015, pp. 1--22;
47.
L. I. Slepyan, Dynamic factor in impact, phase transition and fracture, J. Mech. Phys. Solids, 48 (2000), pp. 931--964.
48.
L. I. Slepyan, Antiplane problem of a crack in a lattice, Mech. Solids, 17 (1982), pp. 101--114.
49.
L. I. Slepyan, Models and Phenomena in Fracture Mechanics, Springer, New York, Berlin, Heidelberg, 2002.
50.
A. Sommerfeld, Mathematische theorie der diffraction, Math. Ann., 47 (1896), pp. 317--374;
51.
A. Sommerfield, Optics. Lectures on Theoretical Physics, Vol. IV, Academic Press, New York, 1964.
52.
F.-O. Speck, General Wiener--Hopf Factorization Methods, Pitman, London, 1985.
53.
E. P. Stephan and W. L. Wendland, A hypersingular boundary integral method for two-dimensional screen and crack problems, Arch. Rational Mech. Anal., 112 (1990), pp. 363--390.
54.
S. A. Thau and Y.-H. Pao, Diffractions of horizontal shear waves by a parabolic cylinder and dynamic stress concentrations, J. Appl. Mech. Trans. ASME Ser. E, 33 (1960), pp. 785--792.
55.
S. R. Treil, Invertibility of a Toeplitz operator does not imply its invertibility by the projection method, Dokl. Akad. Nauk SSSR, 292 (1987), pp. 563--567 (in Russian).
56.
A. A. Wells, Unstable crack propagation in metals: Cleavage and fast fracture, in Proceedings of the Cranfield Crack Propagation Symposium, Vol. 1, 1961, pp. 210--230.
57.
N. Wiener and E. Hopf, Über eine Klasse singulärer Integralgleichungen, Sitzungsber. Preuss. Akad. Wiss. Berlin Phys.-Math. Kl., 32 (1931), pp. 696--706.
58.
A. Zemla, On the fundamental solutions for the difference Helmholtz operator, SIAM J. Numer. Anal., 32 (1995), pp. 560--570;

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 1915 - 1940
ISSN (online): 1095-712X

History

Submitted: 2 March 2015
Accepted: 26 June 2015
Published online: 26 August 2015

Keywords

  1. diffraction
  2. crack
  3. lattice
  4. Wiener--Hopf
  5. Toeplitz
  6. finite section

MSC codes

  1. 78A45
  2. 39A14
  3. 47A40
  4. 74S20
  5. 74J20
  6. 45E10
  7. 47B35
  8. 37L60

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media