Abstract

This paper studies the coupled chemotaxis-haptotatxis system $u_t= \Delta u - \chi \nabla \cdot (u\nabla v) - \xi \nabla \cdot (u\nabla w) + \mu u(1-u-w), x\in \Omega, \, t>0; v_t=\Delta v-v+u, x\in \Omega, \, t>0; w_t=-vw, x\in \Omega, \, t>0$, in a smoothly bounded domain $\Omega\subset\mathbb{R}^n$, $n\le 3$, with zero-flux boundary conditions, where $\chi,\xi$, and $\mu$ are given positive parameters. It is shown that whenever the initial data $(u_0, v_0, w_0)$ are nonnegative and suitably regular fulfilling $u_0\not\equiv 0$ and $w_0\le 1$, the third solution component $w$ decays asymptotically in $L^\infty(\Omega)$. Moreover, under the fully explicit condition $\mu>\frac{\chi^2}{8}$ the solution $(u, v, w)$ exponentially stabilizes to the constant stationary solution $(1,1,0)$ in the norm of $L^\infty(\Omega)$ as $t\to \infty$.

Keywords

  1. chemotaxis
  2. haptotaxis
  3. logistic source
  4. asymptotic stability

MSC codes

  1. 35B35
  2. 35B40
  3. 35K57
  4. 35Q92
  5. 92C17

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., to appear.
2.
X. Cao, Boundedness in a Three-Dimensional Chemotaxis-Haptotaxis System, preprint, arXiv:1501.05383, 2015.
3.
M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 18 (2005), pp. 1685--1734.
4.
M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Media, 1 (2006), pp. 399--439.
5.
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin, 1981.
6.
M. A. Herrero and J. L. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci. 4, 24 (1997), pp. 633--683.
7.
T. Hillen, K. J. Painter, and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci., 23 (2013), pp. 165--198.
8.
S. Hiremath and C. Surulescu, A stochastic multiscale model for acid mediated cancer invasion, Nonlinear Anal. Real World Appl., 22 (2014), pp. 176--205.
9.
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), pp. 52--107.
10.
K. Kuto, K. Osaki, T. Sakurai, and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Phys. D, 241 (2012), pp. 1629--1639.
11.
J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), pp. 1158--1191.
12.
G. Liţcanu and C. Morales-Rodrigo, Asymptotic behaviour of global solutions to a model of cell invasion, Math. Models Methods Appl. Sci., 20 (2010), pp. 1721--1758.
13.
O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, AMS, Providence, RI, 1968.
14.
N. Mizoguchi and M. Winkler, Finite-Time Blow-up in the Two-Dimensional Keller-Segel System, manuscript.
15.
K. Osaki, T. Tsujikawa, A. Yagi, and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), pp. 119--144.
16.
K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Phys. D, 240 (2011), pp. 363--375.
17.
M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations, 103 (1993), pp. 146--178.
18.
C. Stinner, C. Surulescu, and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), pp. 1969--2007.
19.
Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), pp. 60--69.
20.
Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling, Nonlinear Anal. Real World Anal., 12 (2011), pp. 418--435.
21.
Y. Tao Boundedness in a two-dimensional chemotaxis-haptotaxis system, preprint, arXiv:1407.7382v1, 2014.
22.
Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), pp. 1533--1558.
23.
Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 257 (2014), pp. 784--815.
24.
Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), pp. 1225--1239.
25.
Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), pp. 1067--1087.
26.
J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), pp. 849--877.
27.
C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007), pp. 1694--1713.
28.
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), pp. 1516--1537.
29.
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), pp. 2889--2905.
30.
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl. (9), 100 (2013), pp. 748--767.
31.
M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), pp. 1056--1077.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 4229 - 4250
ISSN (online): 1095-7154

History

Submitted: 26 March 2015
Accepted: 3 September 2015
Published online: 5 November 2015

Keywords

  1. chemotaxis
  2. haptotaxis
  3. logistic source
  4. asymptotic stability

MSC codes

  1. 35B35
  2. 35B40
  3. 35K57
  4. 35Q92
  5. 92C17

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media