Abstract

We provide an abstract framework for optimal goal-oriented adaptivity for finite element methods and boundary element methods in the spirit of [C. Carstensen et al., Comput. Math. Appl., 67 (2014), pp. 1195--1253]. We prove that this framework covers standard discretizations of general second-order linear elliptic PDEs and hence generalizes available results [R. Becker, E. Estecahandy, and D. Trujillo, SIAM J. Numer. Anal., 49 (2011), pp. 2451--2469, M. S. Mommer and R. Stevenson, SIAM J. Numer. Anal., 47 (2009), pp. 861--886] beyond the Poisson equation.

Keywords

  1. adaptivity
  2. goal-oriented algorithm
  3. quantity of interest
  4. convergence
  5. optimal convergence rates
  6. finite element method
  7. boundary element method

MSC codes

  1. 65N30
  2. 65N50
  3. 65Y20
  4. 41A25

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (N. Y.), Wiley-Interscience, New York, 2000, http://dx.doi.org/10.1002/9781118032824.
2.
M. Aurada, M. Feischl, T. Führer, M. Karkulik, and D. Praetorius, Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods, Comput. Methods Appl. Math., 13 (2013), pp. 305--332, http://dx.doi.org/10.1515/cmam-2013-0010.
3.
M. Aurada, M. Feischl, J. Kemetmüller, M. Page, and D. Praetorius, Each $H^{1/2}$-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in $\mathbb R^d$, ESAIM Math. Model. Numer. Anal., 47 (2013), pp. 1207--1235, http://dx.doi.org/10.1051/m2an/2013069.
4.
M. Aurada, S. Ferraz-Leite, and D. Praetorius, Estimator reduction and convergence of adaptive BEM, Appl. Numer. Math., 62 (2012), pp. 787--801, http://dx.doi.org/10.1016/j.apnum.2011.06.014.
5.
I. Babuska and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math., 44 (1984), pp. 75--102, http://dx.doi.org/10.1007/BF01389757.
6.
W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel, 2003, http://dx.doi.org/10.1007/978-3-0348-7605-6.
7.
R. Becker, E. Estecahandy, and D. Trujillo, Weighted marking for goal-oriented adaptive finite element methods, SIAM J. Numer. Anal., 49 (2011), pp. 2451--2469, http://dx.doi.org/10.1137/100794298.
8.
R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: Basic analysis and examples, East-West J. Numer. Math., 4 (1996), pp. 237--264.
9.
R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer., 10 (2001), pp. 1--102, http://dx.doi.org/10.1017/S0962492901000010.
10.
P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math., 97 (2004), pp. 219--268, http://dx.doi.org/10.1007/s00211-003-0492-7.
11.
A. Bonito and R. H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method, SIAM J. Numer. Anal., 48 (2010), pp. 734--771, http://dx.doi.org/10.1137/08072838X.
12.
M. Bürg and M. Nazarov, Goal-oriented adaptive finite element methods for elliptic problems revisited, J. Comput. Appl. Math., 287 (2015), pp. 125--147, http://dx.doi.org/10.1016/j.cam.2015.03.031.
13.
C. Carstensen, M. Feischl, M. Page, and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl., 67 (2014), pp. 1195--1253, http://dx.doi.org/10.1016/j.camwa.2013.12.003.
14.
C. Carstensen, M. Maischak, and E. P. Stephan, A posteriori error estimate and $h$-adaptive algorithm on surfaces for Symm's integral equation, Numer. Math., 90 (2001), pp. 197--213, http://dx.doi.org/10.1007/s002110100287.
15.
J. M. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46 (2008), pp. 2524--2550, http://dx.doi.org/10.1137/07069047X.
16.
K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods for differential equations, in Acta Numerica, 1995, Acta Numer., Cambridge University Press, Cambridge, UK, 1995, pp. 105--158, http://dx.doi.org/10.1017/S0962492900002531.
17.
M. Feischl, T. Führer, G. Gantner, A. Haberl, and D. Praetorius, Adaptive boundary element methods for optimal convergence of point errors, Numer. Math., 132 (2016), pp. 541--567, http://dx.doi.org/10.1007/s00211-015-0727-4.
18.
M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius, Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part I: Weakly-singular integral equation, Calcolo, 51 (2014), pp. 531--562, http://dx.doi.org/10.1007/s10092-013-0100-x.
19.
M. Feischl, T. Führer, M. Karkulik, J. M. Melenk, and D. Praetorius, Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part II: Hyper-singular integral equation, Electron. Trans. Numer. Anal., 44 (2015), pp. 153--176.
20.
M. Feischl, T. Führer, and D. Praetorius, Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems, SIAM J. Numer. Anal., 52 (2014), pp. 601--625, http://dx.doi.org/10.1137/120897225.
21.
M. Feischl, M. Karkulik, J. M. Melenk, and D. Praetorius, Quasi-optimal convergence rate for an adaptive boundary element method, SIAM J. Numer. Anal., 51 (2013), pp. 1327--1348, http://dx.doi.org/10.1137/110842569.
22.
M. Feischl, M. Page, and D. Praetorius, Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data, J. Comput. Appl. Math., 255 (2014), pp. 481--501, http://dx.doi.org/10.1016/j.cam.2013.06.009.
23.
T. Gantumur, Adaptive boundary element methods with convergence rates, Numer. Math., 124 (2013), pp. 471--516, http://dx.doi.org/10.1007/s00211-013-0524-x.
24.
M. B. Giles and E. Süli, Adjoint methods for PDEs: A posteriori error analysis and postprocessing by duality, Acta Numer., 11 (2002), pp. 145--236, http://dx.doi.org/10.1017/S096249290200003X.
25.
M. Holst and S. Pollock, Convergence of goal-oriented adaptive finite element methods for nonsymmetric operators, Numer. Methods Partial Differential Equations, 32 (2016), pp. 479--509, http://dx.doi.org/10.1002/num.22002.
26.
G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Appl. Math. Sci. 164, Springer-Verlag, Berlin, 2008, http://dx.doi.org/10.1007/978-3-540-68545-6.
27.
C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws based on a posteriori error estimates, Comm. Pure Appl. Math., 48 (1995), pp. 199--234, http://dx.doi.org/10.1002/cpa.3160480302.
28.
M. Karkulik, D. Pavlicek, and D. Praetorius, On 2D newest vertex bisection: Optimality of mesh-closure and $H^1$-stability of $L_2$-projection, Constr. Approx., 38 (2013), pp. 213--234, http://dx.doi.org/10.1007/s00365-013-9192-4.
29.
C. Kreuzer and K. G. Siebert, Decay rates of adaptive finite elements with Dörfler marking, Numer. Math., 117 (2011), pp. 679--716, http://dx.doi.org/10.1007/s00211-010-0324-5.
30.
G. Kuru, C. V. Verhoosel, K. G. van der Zee, and E. H. van Brummelen, Goal-adaptive isogeometric analysis with hierarchical splines, Comput. Methods Appl. Mech. Engrg., 270 (2014), pp. 270--292, http://dx.doi.org/10.1016/j.cma.2013.11.026.
31.
W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, UK, 2000.
32.
K. Mekchay and R. H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs, SIAM J. Numer. Anal., 43 (2005), pp. 1803--1827, http://dx.doi.org/10.1137/04060929X.
33.
M. S. Mommer and R. Stevenson, A goal-oriented adaptive finite element method with convergence rates, SIAM J. Numer. Anal., 47 (2009), pp. 861--886, http://dx.doi.org/10.1137/060675666.
34.
P. Morgenstern and D. Peterseim, Analysis-suitable adaptive T-mesh refinement with linear complexity, Comput. Aided Geom. Design, 34 (2015), pp. 50--66, http://dx.doi.org/10.1016/j.cagd.2015.02.003.
35.
S. Prudhomme and J. T. Oden, On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors, Comput. Methods Appl. Mech. Engrg., 176 (1999), pp. 313--331, http://dx.doi.org/10.1016/S0045-7825(98)00343-0.
36.
S. A. Sauter and C. Schwab, Boundary Element Methods, Springer Ser. Comput. Math. 39, Springer-Verlag, Berlin, 2011, http://dx.doi.org/10.1007/978-3-540-68093-2.
37.
R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math., 7 (2007), pp. 245--269, http://dx.doi.org/10.1007/s10208-005-0183-0.
38.
R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp., 77 (2008), pp. 227--241, http://dx.doi.org/10.1090/S0025-5718-07-01959-X.
39.
R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Numer. Math. Sci. Comput., Oxford University Press, Oxford, UK, 2013, http://dx.doi.org/10.1093/acprof:oso/9780199679423.001.0001.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1423 - 1448
ISSN (online): 1095-7170

History

Submitted: 18 May 2015
Accepted: 4 March 2016
Published online: 12 May 2016

Keywords

  1. adaptivity
  2. goal-oriented algorithm
  3. quantity of interest
  4. convergence
  5. optimal convergence rates
  6. finite element method
  7. boundary element method

MSC codes

  1. 65N30
  2. 65N50
  3. 65Y20
  4. 41A25

Authors

Affiliations

Kristoffer G. van der Zee

Funding Information

Austrian Science Fund http://dx.doi.org/10.13039/501100002428 : P27005, W1245

Funding Information

Engineering and Physical Sciences Research Council http://dx.doi.org/10.13039/501100000266 : EP/I036427/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media