Abstract

We derive an algorithm for estimating the largest $p \geq 1$ values $a_{ij}$ or $|a_{ij}|$ for an $m \times n$ matrix $A$, along with their locations in the matrix. The matrix is accessed using only matrix--vector or matrix--matrix products. For p = 1 the algorithm estimates the norm $\|A\|_M := \max_{i,j} |a_{ij}|$ or $\max_{i,j} a_{ij}$. The algorithm is based on a power method for mixed subordinate matrix norms and iterates on $n \times t$ matrices, where $t \geq p$ is a parameter. For p = t = 1 we show that the algorithm is essentially equivalent to rook pivoting in Gaussian elimination; we also obtain a bound for the expected number of matrix--vector products for random matrices and give a class of counterexamples. Our numerical experiments show that for p = 1 the algorithm usually converges in just two iterations, requiring the equivalent of 4t matrix--vector products, and for t = 2 the algorithm already provides excellent estimates that are usually within a factor 2 of the largest element and frequently exact. For p > 1 we incorporate deflation to improve the performance of the algorithm. Experiments on real-life datasets show that the algorithm is highly effective in practice.

Keywords

  1. matrix norm estimation
  2. largest elements
  3. power method
  4. mixed subordinate norm
  5. condition number estimation

MSC codes

  1. 65F35

Formats available

You can view the full content in the following formats:

References

1.
A. H. Al-Mohy and N. J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput., 33 (2011), pp. 488--511, https://doi.org/10.1137/100788860.
2.
E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users' Guide, 3rd ed., SIAM, Philadelphia, 1999, https://doi.org/10.1137/1.9780898719604.
3.
G. Ballard, T. G. Kolda, A. Pinar, and C. Seshadhri, Diamond sampling for approximate maximum all-pairs dot-product (MAD) search, in Proceedings of the IEEE International Conference on Data Mining, C. Aggarwal, Z.-H. Zhou, A. Tuzhilin, H. Xiong, and X. Wu, eds., 2015, pp. 11--20, https://doi.org/10.1109/ICDM.2015.46.
4.
D. W. Boyd, The power method for $\ell^p$ norms, Linear Algebra Appl., 9 (1974), pp. 95--101, https://doi.org/10.1016/0024-3795(74)90029-9.
5.
M. Caliari, P. Kandolf, A. Ostermann, and S. Rainer, Comparison of software for computing the action of the matrix exponential, BIT, 54 (2014), pp. 113--128, https://doi.org/10.1007/s10543-013-0446-0.
6.
T. A. Davis, University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices.
7.
T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software, 38 (2011), pp. 1:1--1:25, https://doi.org/10.1145/2049662.2049663.
8.
E. Estrada and N. Hatano, Communicability in complex networks, Phys. Rev. E, 77 (2008), 036111, https://doi.org/10.1103/PhysRevE.77.036111.
9.
E. Estrada and D. J. Higham, Network properties revealed through matrix functions, SIAM Rev., 52 (2010), pp. 696--714, https://doi.org/10.1137/090761070.
10.
R. Fletcher, Practical Methods of Optimization, 2nd ed., Wiley, Chichester, UK, 1987.
11.
L. V. Foster, The growth factor and efficiency of Gaussian elimination with rook pivoting, J. Comput. Appl. Math., 86 (1997), pp. 177--194, https://doi.org/10.1016/S0377-0427(97)00154-4.
12.
L. V. Foster, Corrigendum. The growth factor and efficiency of Gaussian elimination with rook pivoting, J. Comput. Appl. Math., 98 (1998), p. 177, https://doi.org/10.1016/S0377-0427(98)00093-4.
13.
A. Frommer, S. Güttel, and M. Schweitzer, Efficient and stable Arnoldi restarts for matrix functions based on quadrature, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 661--683, https://doi.org/10.1137/13093491X.
14.
M. Gu, Subspace iteration randomization and singular value problems, SIAM J. Sci. Comput., 37 (2015), pp. A1139--A1173, https://doi.org/10.1137/130938700.
15.
M. Gu and L. Miranian, Strong rank revealing Cholesky factorization, Electron. Trans. Numer. Anal., 17 (2004), pp. 76--92, http://eudml.org/doc/125035.
16.
W. W. Hager, Condition estimates, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 311--316, https://doi.org/10.1137/0905023.
17.
F. M. Harper and J. A. Konstan, The MovieLens datasets: History and context, ACM Trans. Interactive Intelligent Systems, 5 (2015), pp. 19:1--19:19, https://doi.org/10.1145/2827872.
18.
D. J. Higham, P. Grindrod, A. V. Mantzaris, A. Otley, and P. Laflin, Anticipating activity in social media spikes, in Workshop on Modeling and Mining Temporal Interactions within the 9th International AAAI Conference on the Web and Social Media, B. Gonçalves, M. Karsai, and N. Perra, eds., The AAAI Press, Palo Alto, CA, 2015, pp. 1--7.
19.
N. J. Higham, FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation (Algorithm 674), ACM Trans. Math. Software, 14 (1988), pp. 381--396, https://doi.org/10.1145/63522.214391.
20.
N. J. Higham, Experience with a matrix norm estimator, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 804--809, https://doi.org/10.1137/0911047.
21.
N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002, https://doi.org/10.1137/1.9780898718027.
22.
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008, https://doi.org/10.1137/1.9780898717778.
23.
N. J. Higham and F. Tisseur, A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1185--1201, https://doi.org/10.1137/S0895479899356080.
24.
A. N. Langville and C. D. Meyer, Who's \#1? The Science of Rating and Ranking, Princeton University Press, Princeton, NJ, 2012.
25.
J. Leskovec, J. Kleinberg, and C. Faloutsos, Graph evolution: Densification and shrinking diameters, ACM Trans. Knowl. Discov. Data, 1 (2007), pp. 2:1--2:41.
26.
D. Liben-Nowell and J. Kleinberg, The link prediction problem for social networks, J. Amer. Soc. Inf. Sci. Tech., 58 (2007), pp. 1019--1031, https://doi.org/10.1002/asi.20591.
27.
J. Peypouquet, Convex Optimization in Normed Spaces: Theory, Methods and Examples, Springer-Verlag, New York, 2015, https://doi.org/10.1007/978-3-319-13710-0.
28.
P. D. Tao, Convergence of a subgradient method for computing the bound norm of matrices, Linear Algebra Appl., 62 (1984), pp. 163--182 (in French), https://doi.org/10.1016/0024-3795(84)90093-4.
29.
C. Teflioudi, R. Gemulla, and O. Mykytiuk, LEMP: Fast retrieval of large entries in a matrix product, in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD '15), 2015, pp. 107--122, https://doi.org/10.1145/2723372.2747647.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: C584 - C601
ISSN (online): 1095-7197

History

Submitted: 21 December 2015
Accepted: 11 August 2016
Published online: 19 October 2016

Keywords

  1. matrix norm estimation
  2. largest elements
  3. power method
  4. mixed subordinate norm
  5. condition number estimation

MSC codes

  1. 65F35

Authors

Affiliations

Funding Information

European Research Council http://dx.doi.org/10.13039/501100000781 : 267526

Funding Information

Engineering and Physical Sciences Research Council http://dx.doi.org/10.13039/501100000266 : EP/I01912X/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media