Abstract

An implementation of GMRES with multiple preconditioners is proposed for solving shifted linear systems with shift-and-invert preconditioners. With this type of preconditioner, the Krylov subspace can be built without requiring the matrix-vector product with the shifted matrix. Furthermore, the multipreconditioned search space is shown to grow only linearly with the number of preconditioners. This allows for a more efficient implementation of the algorithm. The proposed implementation is tested on shifted systems that arise in computational hydrology and the evaluation of different matrix functions. The numerical results indicate the effectiveness of the proposed approach.

Keywords

  1. shifted systems
  2. Krylov solvers
  3. GMRES

MSC codes

  1. 65F10

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. I. Ahmad, D. B. Szyld, and M. B. van Gijzen, Preconditioned multishift BiCG for $\mathcal{H}_{2}$-optimal model reduction, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 401--424.
2.
M. Arioli, A stopping criterion for the conjugate gradient algorithm in a finite element method framework, Numer. Math., 97 (2004), pp. 1--24.
3.
M. Arioli, I. Duff, and D. Ruiz, Stopping criteria for iterative solvers, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 138--144.
4.
M. Arioli, D. Loghin, and A. J. Wathen, Stopping criteria for iterations in finite element methods, Numer. Math., 99 (2005), pp. 381--410.
5.
T. Bakhos, A. K. Saibaba, and P. K. Kitanidis, A fast algorithm for parabolic PDE-based inverse problems based on Laplace transforms and flexible Krylov solvers, J. Comput. Phys., 299 (2015), pp. 940--954.
6.
M. Baumann and M. B. van Gijzen, Nested Krylov methods for shifted linear systems, SIAM J. Sci. Comput., 37 (2015), pp. S90--S112.
7.
W. N. Bell, L. N. Olson, and J. B. Schroder, PyAMG: Algebraic Multigrid Solvers in Python v3.0, Release 3.2, 2015, https://github.com/pyamg/pyamg.
8.
S. Bellavia, V. De Simone, D. Di Serafino, and B. Morini, Efficient preconditioner updates for shifted linear systems, SIAM J. Sci. Comput., 33 (2011), pp. 1785--1809.
9.
M. Benzi and D. Bertaccini, Approximate inverse preconditioning for shifted linear systems, BIT, 43 (2003), pp. 231--244.
10.
M. Cardiff, W. Barrash, and P. K. Kitanidis, Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities, Water Res. Res., 49 (2013), pp. 7311--7326.
11.
J. Chen, M. Anitescu, and Y. Saad, Computing f(${A}$)b via least squares polynomial approximations, SIAM J. Sci. Comput., 33 (2011), pp. 195--222.
12.
D. Darnell, R. B. Morgan, and W. Wilcox, Deflated GMRES for systems with multiple shifts and multiple right-hand sides, Linear Algebra Appl., 429 (2008), pp. 2415--2434.
13.
T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software, 38 (2011), 1.
14.
A. Frommer, B. Nöckel, S. Güsken, T. Lippert, and K. Schilling, Many masses on one stroke: Economic computation of quark propagators, Internat. J. Modern Phys. C, 6 (1995), pp. 627--638.
15.
S. Gratton, A. Sartenaer, and J. Tshimanga, On a class of limited memory preconditioners for large scale linear systems with multiple right-hand sides, SIAM J. Optim., 21(2011), pp. 912--935.
16.
C. Greif, T. Rees, and D. B. Szyld, GMRES with multiple preconditioners, SeMA J., 74 (2017), pp. 213--231.
17.
C. Greif, T. Rees, and D. B. Szyld, Additive Schwarz with variable weights, in Domain Decomposition Methods in Science and Engineering XXI, J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, and O. Widlund, eds., Lect. Notes Comput. Sci. Eng. 98, Springer, Berlin, 2014, pages 661--668.
18.
A. Grim-McNally, E. de Sturler, and S. Gugercin, Preconditioning Parametrized Linear Systems, preprint, arXiv:1601.05883, 2016.
19.
G.-D. Gu, X.-L. Zhou, and L. Lin, A flexible preconditoned Arnoldi method for shifted linear systems, J. Comput. Math., 25 (2007), pp. 522--530.
20.
M. Gu and S. C. Eisenstat Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848--869.
21.
N. Hale, N. J. Higham, and L. N. Trefethen, Computing ${A}^\alpha$, $\log({A})$, and related matrix functions by contour integrals, SIAM J. Numer. Anal., 46 (2008), pp. 2505--2523.
22.
N. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002.
23.
N. J. Higham and A. H. Al-Mohy, Computing matrix functions, Acta Numer., 19 (2010), pp. 159--208.
24.
B. Jegerlehner, Krylov Space Solvers for Shifted Linear Systems, preprint, arXiv:hep-lat/9612014, 1996.
25.
M. E. Kilmer and E. de Sturler, Recycling subspace information for diffuse optical tomography, SIAM J. Sci. Comput., 27 (2006), pp. 2140--2166.
26.
A. Logg, K.-A. Mardal, and G. N. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer, Heidelberg, 2012.
27.
A. Logg and G. N. Wells, DOLFIN: Automated finite element computing, ACM Trans. Math. Software, 37 (2010), 20.
28.
A. Logg, G. N. Wells, and J. Hake, DOLFIN: A C++/Python finite element library, in Automated Solution of Differential Equations, A. Logg, K.-A. Mardal, and G. N. Wells, eds., Lect. Notes Comput. Sci. Eng. 84, Springer, Berlin, 2012, pp. 173--225.
29.
K. Meerbergen, The solution of parametrized symmetric linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), pp. 1038--1059.
30.
K. Meerbergen and Z. Bai, The Lanczos method for parameterized symmetric linear systems with multiple right-hand sides, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1642--1662.
31.
G. Meurant, The computation of bounds for the norm of the error in the conjugate gradient algorithm, Numer. Algorithms, 16 (1997), pp. 77--87.
32.
G. Meurant and Z. Strakoš, The Lanczos and conjugate gradient algorithms in finite precision arithmetic, Acta Numer., 15 (2006), pp. 471--542.
33.
J. L. Morales and J. Nocedal, Automatic preconditioning by limited memory quasi--Newton updating, SIAM J. Optim., 10 (2000), pp. 1079--1096.
34.
W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides, Nume. Math., 6 (1964), pp. 405--409.
35.
C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), 43--71.
36.
R.-É. Plessix and C. A. Pérez Solano, Modified surface boundary conditions for elastic waveform inversion of low-frequency wide-angle active land seismic data, Geophys. J. Int., 201 (2015), pp. 1324--1334.
37.
J.-L. Rigal and J. Gaches, On the compatibility of a given solution with the data of a linear system, J. ACM, 14 (1967), pp. 543--548.
38.
Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14 (1993), pp. 461--469.
39.
Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856--869.
40.
A. K. Saibaba, T. Bakhos, and P. K. Kitanidis, A flexible Krylov solver for shifted systems with application to oscillatory hydraulic tomography, SIAM J. Sci. Comput., 35 (2013), pp. A3001--A3023.
41.
A. K. Saibaba and P. K. Kitanidis, Efficient methods for large-scale linear inversion using a geostatistical approach, Water Res. Res., 48 (2012), W05522.
42.
A. K. Saibaba and P. K. Kitanidis, Fast computation of uncertainty quantification measures in the geostatistical approach to solve inverse problems, Adv. Water Res., 82 (2015), pp. 124--138.
43.
V. Simoncini and D. B. Szyld, Theory of inexact Krylov subspace methods and applications to scientific computing, SIAM J. Sci. Comput., 25 (2003), pp. 454--477.
44.
V. Simoncini and D. B. Szyld, Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl., 14 (2007), pp. 1--59.
45.
K. M. Soodhalter, Block Krylov subspace recycling for shifted systems with unrelated right-hand sides, SIAM J. Sci. Comput., 38 (2016), pp. A302--A324.
46.
K. M. Soodhalter, D. B. Szyld, and F. Xue, Krylov subspace recycling for sequences of shifted linear systems, Appl. Numer. Math., 81 (2014), 105--118.
47.
G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990.
48.
D. B. Szyld and J. A. Vogel, FQMR: A flexible quasi-minimal residual method with inexact preconditioning, SIAM J. Sci. Comput., 23 (2001), pp. 363--380.
49.
J. Virieux and S. Operto, An overview of full-waveform inversion in exploration geophysics, Geophysics, 74 (2009), pp. WCC1--WCC26.
50.
J. A. Vogel, Flexible BiCG and flexible Bi-CGSTAB for nonsymmetric linear systems, Appl. Math. Comput., 188 (2007), pp. 226--233.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: S222 - S247
ISSN (online): 1095-7197

History

Submitted: 1 April 2016
Accepted: 19 January 2017
Published online: 26 October 2017

Keywords

  1. shifted systems
  2. Krylov solvers
  3. GMRES

MSC codes

  1. 65F10

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : DMS-1418882
U.S. Department of Energy https://doi.org/10.13039/100000015 : DE-SC0016578

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media