Abstract

This paper is concerned with transition paths within the framework of the overdamped Langevin dynamics model of chemical reactions. We aim to give an efficient description of typical transition paths in the small temperature regime. We adopt a variational point of view and seek the best Gaussian approximation, with respect to Kullback--Leibler divergence, of the non-Gaussian distribution of the diffusion process. We interpret the mean of this Gaussian approximation as the “most likely path,” and the covariance operator as a means to capture the typical fluctuations around this most likely path. We give an explicit expression for the Kullback--Leibler divergence in terms of the mean and the covariance operator for a natural class of Gaussian approximations and show the existence of minimizers for the variational problem. Then the low temperature limit is studied via $\Gamma$-convergence of the associated variational problem. The limiting functional consists of two parts: The first part depends only on the mean and coincides with the $\Gamma$-limit of the rescaled Freidlin--Wentzell rate functional. The second part depends on both the mean and the covariance operator and is minimized if the dynamics are given by a time-inhomogenous Ornstein--Uhlenbeck process found by linearization of the Langevin dynamics around the Freidlin--Wentzell minimizer.

Keywords

  1. transition path
  2. Kullback--Leibler approximation
  3. Onsager--Machlup functional
  4. large deviations
  5. gamma-convergence

MSC codes

  1. 28C20
  2. 60G15
  3. 60F10

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Ann. Inst. Henri Poincaré, 7 (1990), pp. 67--90, https://doi.org/10.1016/S0294-1449(16)30304-3.
2.
A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons, Phys. Rev. Lett., 104 (2010), 136403, https://doi.org/10.1103/PhysRevLett.104.136403.
3.
C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2006, https://doi.org/10.1007/978-0-387-45528-0.
4.
A. Braides, $\Gamma$-convergence for Beginners, Oxford Lect. Ser. Math. Appl. 22, Oxford University Press, Oxford, UK, 2002.
5.
F. Brauer and J. A. Nohel, Ordinary Differential Equations: A First Course, University Mathematics, WA Benjamin Advanced Book Program, New York, 1967.
6.
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer Science & Business Media, Springer, New York, 2010.
7.
P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation. Volume 1: One-dimensional Theory, Birkhäuser-Verlag, Berlin, 1971.
8.
M. Dashti, K. Law, A. Stuart, and J. Voss, MAP estimators and posterior consistency in Bayesian nonparametric inverse problems, Inverse Problems, 29 (2013), 095017, https://doi.org/10.1088/0266-5611/29/9/095017.
9.
D. Dürr and A. Bach, The Onsager-Machlup function as Lagrangian for the most probable path of a diffusion process, Commun. Math. Phys., 160 (1978), pp. 153--170, https://doi.org/10.1007/BF01609446.
10.
W. E, W. Ren, and E. Vanden-Eijnden, String method for the study of rare events, Phys. Rev. B, 66 (2002), 052301, https://doi.org/10.1103/PhysRevB.66.052301.
11.
W. E, W. Ren, and E. Vanden-Eijnden, Minimum action method for the study of rare events, Comm. Pure. App. Math., 57 (2004), pp. 637--656, https://doi.org/10.1002/cpa.20005.
12.
W. E, W. Ren, and E. Vanden-Eijnden, Finite temperature string method for the study of rare events, J. Phys. Chem. B, 109 (2005), pp. 6688--6693, https://doi.org/10.1021/jp0455430.
13.
L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math. 19, AMS, Providence, RI, 2010, https://doi.org/10.1090/gsm/019.
14.
I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells, Proc. Roy. Soc. Edinburgh Sect. A, 111 (1989), pp. 89--102, https://doi.org/10.1017/S030821050002504X.
15.
M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, 3rd ed., Grundl. Math. Wiss. 260, Springer, New York, 2012, https://doi.org/10.1007/978-3-642-25847-3.
16.
T. Grafke, T. Schäfer, and E. Vanden-Eijnden, Long Term Effects of Small Random Perturbations on Dynamical Systems: Theoretical and Computational Tools, preprint, https://arXiv.org/abs/1604.03818, 2016.
17.
M. Hairer, An Introduction to Stochastic PDEs, preprint, https://arXiv.org/abs/0907.4178, 2009.
18.
M. Hairer, A. Stuart, and J. Voss, Analysis of SPDEs arising in path sampling II: The nonlinear case, Ann. Appl. Probab., 17 (2007), pp. 1657--1706, https://doi.org/10.1214/07-AAP441.
19.
M. Heymann and E. Vanden-Eijnden, The geometric minimum action method: A least action principle on the space of curves, Comm. Pure. App. Math., 61 (2008), pp. 1052--1117, https://doi.org/10.1002/cpa.20238.
20.
T. Lelièvre, G. Stoltz, and M. Rousset, Free Energy Computations: A Mathematical Perspective, World Scientific, Singapore, 2010, https://doi.org/10.1142/9781848162488.
21.
G. Leoni, A remark on the compactness for the Cahn-Hilliard functional, ESAIM Control Optim. Calc. Var., 20 (2014), pp. 517--523, https://doi.org/10.1051/cocv/2013073.
22.
A. J. Majda and B. Gershgorin, Improving model fidelity and sensitivity for complex systems through empirical information theory, Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 10044--10049, https://doi.org/10.1073/pnas.1105174108.
23.
M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, vol. 14, Dover Publications, New York, 1992.
24.
G. D. Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Boston, 1993.
25.
L. Modica and S. Mortola, Un esempio di $\Gamma^-$-convergenza, Boll. Un. Mat. Ital. B, 14 (1977), pp. 285--299.
26.
G. A. Pavliotis and A. Stuart, Multiscale Methods: Averaging and Homogenization, Texts in Appl. Math. 53, Springer, New York, 2008.
27.
F. J.Pinski, G. Simpson, A. M. Stuart, and H. Weber, Algorithms for Kullback--Leibler approximation of probability measures in infinite dimensions, SIAM J. Sci. Comput., 37 (2015), pp. A2733--A2757, https://doi.org/10.1137/14098171X.
28.
F. J. Pinski, G. Simpson, A. M. Stuart, and H. Weber, Kullback--Leibler approximation for probability measures on infinite dimensional spaces, SIAM J. Math. Anal, 47 (2015), pp. 4091--4122, https://doi.org/10.1137/140962802.
29.
F. J. Pinski and A. M. Stuart, Transition paths in molecules at finite temperature, J. Chem. Phys., 132 (2010), 184104.
30.
F. J. Pinski, A. M. Stuart, and F. Theil, $\Gamma$-limit for transition paths of maximal probability, J. Statist. Phys., 146 (2012), pp. 955--974, https://doi.org/10.1007/s10955-012-0443-8.
31.
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, MIT Press, Cambridge, MA, 2006.
32.
G. Royer, An Initiation to Logarithmic Sobolev Inequalities, AMS, Providence, RI, 2007.
33.
E. Vanden-Eijnden, Transition path theory, in An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation, Springer, Amsterdam, 2014, pp. 91--100, https://doi.org/10.1007/978-94-007-7606-7.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 3005 - 3047
ISSN (online): 1095-7154

History

Submitted: 22 April 2016
Accepted: 3 March 2017
Published online: 10 August 2017

Keywords

  1. transition path
  2. Kullback--Leibler approximation
  3. Onsager--Machlup functional
  4. large deviations
  5. gamma-convergence

MSC codes

  1. 28C20
  2. 60G15
  3. 60F10

Authors

Affiliations

Funding Information

Defense Advanced Research Projects Agency https://doi.org/10.13039/100000185
Office of Naval Research https://doi.org/10.13039/100000006
Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266
Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/HO23364/1
Royal Society https://doi.org/10.13039/501100000288

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media