Abstract

In this article, we develop a set-oriented numerical methodology which allows us to perform uncertainty quantification (UQ) for dynamical systems from a global point of view. That is, for systems with uncertain parameters we approximate the corresponding global attractors and invariant measures in the related stochastic setting. Our methods do not rely on generalized polynomial chaos techniques. Rather, we extend classical set-oriented methods designed for deterministic dynamical systems [M. Dellnitz and A. Hohmann, Numer. Math., 75 (1997), pp. 293--317; M. Dellnitz and O. Junge, SIAM J. Numer. Anal., 36 (1999), pp. 491--515] to the UQ-context, and this allows us to analyze the long-term uncertainty propagation. The algorithms have been integrated into the software package GAIO [M. Dellnitz, G. Froyland, and O. Junge, Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin, 2001, pp. 145--174], and we illustrate the use and efficiency of these techniques with a couple of numerical examples.

Keywords

  1. uncertainty quantification
  2. set-oriented numerical methods
  3. attractors

MSC codes

  1. 65P99
  2. 37M99
  3. 37D45
  4. 65N99

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems, SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 757--789.
2.
A. Arneodo, Asymptotic Chaos, CNRS, Mécanique Statistique, Université de Nice, 1982.
3.
J. Bush, M. Gameiro, S. Harker, H. Kokubu, K. Mischaikow, I. Obayashi, and P. Pilarczyk, Combinatorial-topological framework for the analysis of global dynamics, Chaos, 22 (2012), pp. 047508--01, 047508--16.
4.
M. Dellnitz, G. Froyland, and O. Junge, The algorithms behind GAIO---set oriented numerical methods for dynamical systems, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, 2001, pp. 145--174.
5.
M. Dellnitz, M. Hessel-von Molo, and A. Ziessler, On the computation of attractors for delay differential equations, J. Comput. Dynam., 3 (2016).
6.
M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numer. Math., 75 (1997), pp. 293--317.
7.
M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf, Exploring invariant sets and invariant measures, Chaos, 7 (1997), pp. 221--228.
8.
M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior, SIAM J. Numer. Anal., 36 (1999), pp. 491--515.
9.
M. Dellnitz, O. Junge, M. Lo, J. E. Marsden, K. Padberg, R. Preis, S. Ross, and B. Thiere, Transport of Mars-crossing asteroids from the quasi-Hilda region, Phys. Rev. Lett., 94 (2005), pp. 231102-1--231102-4.
10.
M. Dellnitz, O. Schütze, and T. Hestermeyer, Covering Pareto sets by multilevel subdivision techniques, J. Optim. Theory Appl., 124 (2005), pp. 113--136.
11.
M. Dellnitz, O. Schütze, and S. Sertl, Finding zeros by multilevel subdivision techniques, IMA J. Numer. Anal., 22 (2002), pp. 167--185.
12.
G. Froyland, Ulam's method for random interval maps, Nonlinearity, 12 (1999), pp. 1029--1052.
13.
G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost invariant sets and cycles, SIAM J. Sci. Comput., 24 (2003), pp. 1839--1863.
14.
G. Froyland, C. Horenkamp, V. Rossi, N. Santitissadeekorn, and A. Sen Gupta, Three-dimensional characterization and tracking of an Agulhas ring, Ocean Model., 52--53 (2012), pp. 69--75.
15.
G. Froyland and P. Koltai, Estimating Long-Term Behavior of Periodically Driven Flows Without Trajectory Integration, preprint, arXiv:1511.07272, 2015.
16.
G. Froyland, S. Lloyd, and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems, Phys. D, 239 (2010), pp. 1527--1541.
17.
G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds---connecting probabilistic and geometric descriptions of coherent structures in flows, Phys. D, 238 (2009), pp. 1507--1523.
18.
J. H. Halton, Algorithm 247: Radical-inverse quasi-random point sequence, Commun. ACM, 7 (1964), pp. 701--702.
19.
M. Hénon, A two-dimensional mapping with a strange attractor, Commun. Math. Phys., 50 (1976), pp. 69--77.
20.
Y. Kifer, General random perturbations of hyperbolic and expanding transformations, J. Anal. Math., 47 (1986), pp. 111--150.
21.
P. Koltai, Efficient Approximation Methods for the Global Long-Term Behavior of Dynamical Systems: Theory, Algorithms and Examples, Ph.D. thesis, Technische Universität München, 2010.
22.
B. Krauskopf and H. Osinga, Two-dimensional global manifolds of vector fields, Chaos, 9 (1999), pp. 768--774.
23.
D. M. Luchtenburg, S. L. Brunton, and C. W. Rowley, Long-time uncertainty propagation using generalized polynomial chaos and flow map composition, J. Comput. Phys., 274 (2014), pp. 783--802.
24.
J. Osborn, Spectral approximation for compact operators, Math. Comput., 29 (1975), pp. 712--725.
25.
J. M. Pasini and T. Sahai, Polynomial chaos based uncertainty quantification in hamiltonian, multi-time scale, and chaotic systems, J. Comput. Dynam., 1 (2014), pp. 357--375.
26.
M. Pollicott, Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds, London Math. Soc. Lecture Note Seri. 180, Cambridge University Press, Cambridge, UK, 1993.
27.
C. Schütte, W. Huisinga, and P. Deuflhard, Transfer operator approach to conformational dynamics in biomolecular systems, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, B. Fiedler, ed., Springer, Berlin, 2001, pp. 191--223.
28.
B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. System Safety, 93 (2008), pp. 964--979.
29.
T. J. Sullivan, Introduction to Uncertainty Quantification, Texts in Appl. Math. 63, Springer, Berlin, 2015.
30.
D. Szolnoki, Algorithms for Reachability Problems, Shaker Verlag, Aachen, 2001.
31.
Hénon Map, Wikipedia, 2016.
32.
D. Xiu, Efficient collocational approach for parametric uncertainty analysis, Commun. Comput. Phys., 2 (2007), pp. 293--309.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems
Pages: 120 - 138
ISSN (online): 1536-0040

History

Submitted: 27 April 2016
Accepted: 11 October 2016
Published online: 12 January 2017

Keywords

  1. uncertainty quantification
  2. set-oriented numerical methods
  3. attractors

MSC codes

  1. 65P99
  2. 37M99
  3. 37D45
  4. 65N99

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media