Abstract

Generalizations of the classical Euler formula to the setting of fractional calculus are discussed. Compound interest and fractional compound interest serve as motivation. Connections to fractional master equations are highlighted. An application to the Schlögl reactions with Mittag-Leffler waiting times is described.

Keywords

  1. Euler limit formula
  2. Mittag-Leffler
  3. master equation

MSC codes

  1. 35Q92
  2. 35R60

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
L. Abadias and P. J. Miana, A subordination principle on Wright functions and regularized resolvent families, J. Function Spaces (2015), 158145.
2.
L. Altenberg, Resolvent positive linear operators exhibit the reduction phenomenon, Proc. Nat. Acad. Sci., 109 (2012), pp. 3705--3710, https://doi.org/10.1073/pnas.1113833109.
3.
C. N. Angstmann, I. C. Donnelly, and B. I. Henry, Pattern formation on networks with reactions: A continuous-time random-walk approach, Phys. Rev. E, 87 (2013), 032804.
4.
C. N. Angstmann, I. C. Donnelly, B. I. Henry, T. A. M. Langlands, and P. Straka, Generalized continuous time random walks, master equations, and fractional Fokker--Planck equations, SIAM J. Appl. Math., 75 (2015), pp. 1445--1468.
5.
W. Arendt, C. Batty, M. Hieber, and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Birkhauser, Basel, 2011.
6.
B. Baeumer and M. M. Meerschaert, Stochastic solutions for fractional Cauchy problems, Fract. Calc. Appl. Anal., 4 (2001), pp. 481--500.
7.
E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. thesis, Technische Universiteit Eindhoven, 2001.
8.
B. P. Belinskiy and T. J. Kozubowski, Exponential mixture representation of geometric stable densities, J. Math. Anal. Appl., 246 (2000), pp. 465--479.
9.
Y. Berkowitz, Y. Edery, H. Scher, and B. Berkowitz, Fickian and non-Fickian diffusion with bimolecular reactions, Phys. Rev. E, 87 (2013), 032812.
10.
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Appl. Math. 9, SIAM, Philadelphia, 1994.
11.
E. Blanc, S. Engblom, A. Hellander, and P. Lötstedt, Mesoscopic modeling of stochastic reaction-diffusion kinetics in the subdiffusive regime, Multiscale Model. Simul., 14 (2016), pp. 668--707, https://doi.org/10.1137/15M1013110.
12.
S. Bochner, Harmonic Analysis and the Theory of Probability, Dover, New York, 2005.
13.
K. Burrage and G. Lythe, Accurate stationary densities with partitioned numerical methods for stochastic differential equations, SIAM J. Numer. Anal., 47 (2009), pp. 1601--1618.
14.
A. V. Chechkin, R. Gorenflo, and I. M. Sokolov, Fractional diffusion in inhomogeneous media, J. Phys. A, 38 (2005), p. L679.
15.
B. Drawert, M. Trogdon, S. Toor, L. Petzold, and A. Hellander, Molns: A cloud platform for interactive, reproducible, and scalable spatial stochastic computational experiments in systems biology using pyurdme, SIAM J. Sci. Comput., 38 (2016), pp. C179--C202, https://doi.org/10.1137/15M1014784.
16.
S. Fedotov, Non-Markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts, Phys. Rev. E, 81 (2010), 011117, https://doi.org/10.1103/PhysRevE.81.011117.
17.
P. J. Forrester and C. J. Thompson, The Golden--Thompson inequality: Historical aspects and random matrix applications, J. Math. Phys., 55 (2014).
18.
D. Fulger, E. Scalas, and G. Germano, Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation, Phys. Rev. E, 77 (2008), 021122.
19.
R. Garrappa, Numerical evaluation of two and three parameter Mittag-Leffler functions, SIAM J. Numer. Anal., 53 (2015), pp. 1350--1369, https://doi.org/10.1137/140971191.
20.
D. Gillespie, Markov Processes: An Introduction for Physical Scientists, Academic Press, New York, 1992.
21.
R. Gorenflo, F. Mainardi, and A. Vivoli, Subordination in fractional diffusion processes via continuous time random walk, in More Progresses in Analysis, World Scientific, River Edge, NJ, 2009.
22.
H. J. Haubold, A. M. Mathai, and R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., 2011 (2011), 298628.
23.
B. I. Henry, T. A. M. Langlands, and S. L. Wearne, Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations, Phys. Rev. E, 74 (2006), 031116.
24.
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
25.
R. Hilfer and L. Anton, Fractional master equations and fractal time random walks, Phys. Rev. E, 51 (1995), R848.
26.
A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, Cambridge, UK, 2009.
27.
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1976.
28.
V. M. Kenkre, E. W. Montroll, and M. F. Shlesinger, Generalized master equations for continuous-time random walks, J. Statist. Phys., 9 (1973), p. 45.
29.
J. Klafter, A. Blumen, and M. F. Shlesinger, Stochastic pathway to anomalous diffusion, Phys. Rev. A, 35 (1987), pp. 3081--3085.
30.
J. Klafter and I. M. Sokolov, First Steps in Random Walks: From Tools to Applications, Oxford University Press, New York, 2011.
31.
S. Kotz, T. Kozubowski, and K. Podgorski, The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering and Finance, Birkhauser, Basel, 2001.
32.
T. J. Kozubowski, Computer simulation of geometric stable distributions, J. Comput. Appl. Math., 116 (2000), pp. 221--229.
33.
T. J. Kozubowski and S. T. Rachev, Univariate geometric stable laws, J. Comput. Anal. Appl., 1 (1999), pp. 177--217.
34.
T. Kurtz, Representations of Markov processes as multiparameter time changes, Ann. Probab., 8 (1980), pp. 682--715.
35.
P. Lax and L. Zalcman, Complex Proofs of Real Theorems, AMS, Providence, RI, 2012.
36.
P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations, Comm. Pure Appl. Math, 9 (1956), pp. 267--293.
37.
S. Macnamara, Cauchy integrals for computational solutions of master equations, ANZIAM J., 56 (2015), pp. 32--51, https://doi.org/10.21914/anziamj.v56i0.9345.
38.
S. MacNamara, K. Burrage, and R. Sidje, Multiscale Modeling of Chemical Kinetics via the Master Equation, SIAM Multiscale Model. Simul., 6 (2008), pp. 1146--1168.
39.
M. Magdziarz, A. Weron, and K. Weron, Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation, Phys. Rev. E, 75 (2007), 016708.
40.
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.
41.
F. Mainardi, M. Raberto, R. Gorenflo, and E. Scalas, Fractional calculus and continuous-time finance II: The waiting-time distribution, Phys. A, 287 (2000), pp. 468--481.
42.
A. Mathai, R. K. Saxena, and H. J. Haubold, The H-Function: Theory and Applications, Springer, Berlin, 2009.
43.
W. McLean, Regularity of solutions to a time-fractional diffusion equation, ANZIAM J., 52 (2010), pp. 123--138.
44.
W. McLean and V. Thomée, Time discretization of an evolution equation via Laplace transforms, IMA J. Numer. Anal., 24 (2004), pp. 439--463.
45.
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1--77.
46.
G. M. Mittag-Leffler, Sur la nouvelle fonction ${E}_{\alpha}(x)$, C. R. Acad. Sci. Paris, 137 (1903), pp. 554--558.
47.
G. M. Mittag-Leffler, Une generalisation de l'integrale de Laplace-Abel, C. R. Acad. Sci. Paris, 137 (1903), pp. 537--539.
48.
E. W. Montroll and G. H. Weiss, Random Walks on Lattices. II, J. Math. Phys., 6 (1965), pp. 167--181.
49.
K. Mustapha and W. McLean, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J. Numer. Anal., 51 (2013), pp. 516--525.
50.
I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications, Academic Press, San Diego, 1999.
51.
J. Prüss, Evolutionary Integral Equations and Applications, Birkhauser, Basel, 2012.
52.
M. Raberto, F. Rapallo, and E. Scalas, Semi-Markov Graph Dynamics, PLoS ONE, 6 (2011), e23370.
53.
I. M. Sokolov, M. G. W. Schmidt, and F. Sagués, Reaction-subdiffusion equations, Phys. Rev. E, 73 (2006), 031102, https://doi.org/10.1103/PhysRevE.73.031102.
54.
R. Speth, W. Green, S. MacNamara, and G. Strang, Balanced splitting and rebalanced splitting, SIAM J. Numer. Anal., 51 (2013), pp. 3084--3105.
55.
G. Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press, Wellesley, MA, 2009.
56.
G. Strang and S. MacNamara, Functions of difference matrices are Toeplitz plus Hankel, SIAM Rev., 56 (2014), pp. 525--546, https://doi.org/10.1137/120897572.
57.
L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.
58.
G. Wanner and E. Hairer, Analysis by Its History, Springer, Berlin, 1995.
59.
Q. Yang, T. Moroney, K. Burrage, I. Turner, and F. Liu, Novel numerical methods for time-space fractional reaction diffusion equations in two dimensions, ANZIAM J., 52 (2011), pp. 395--409.
60.
K. Yosida, Functional Analysis, Springer, Berlin, 1995.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 447 - 469
ISSN (online): 1095-712X

History

Submitted: 31 August 2016
Accepted: 14 November 2016
Published online: 16 March 2017

Keywords

  1. Euler limit formula
  2. Mittag-Leffler
  3. master equation

MSC codes

  1. 35Q92
  2. 35R60

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media