Abstract

Microscopy imaging allows detailed observations of intracellular movements and the acquisition of large datasets that can be fully analyzed only by automated algorithms. Here, we develop a computational method for the automatic identification and reconstruction of trajectories followed by subcellular particles captured in microscopy image data. The method operates on stacks of raw image data and computes the complete set of contained trajectories. The method utilizes topological data analysis and standard image processing techniques and makes no assumptions about the underlying dynamics besides continuity. We test the developed method successfully against artificial and experimental datasets. Application of the method on the experimental data reveals good agreement with manual tracking and benchmarking yields performance scores competitive to the existing state-of-the-art tracking methods.

Keywords

  1. mathematical biology
  2. topological data analysis
  3. tracking
  4. cell imaging
  5. cytoplasmic streaming

MSC codes

  1. 92B05
  2. 62P10
  3. 94A08

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Index of Supplementary Materials

Title of paper: A Bayesian Topological Framework for the Identification and Reconstruction of Subcellular Motion

Authors: Ioannis Sgouralis, Andreas Nebenfuehr, and Vasileios Maroulas

File: M109575_01.pdf

Type: PDF file

Contents: The supplement contains: (i) a glossary summarizing the notation used throughout this study, (ii) a pseudocode implementation of the proposed method, (iii) example analyses of additional experimental datasets.

References

1.
D. Avisar, A. Prokhnevsky, K. Makarova, E. Koonin, and V. Dolja, Myosin xi-k is required for rapid trafficking of Golgi stacks, peroxisomes, and mitochondria in leaf cells of nicotiana benthamiana, Plant Physiol., 146 (2008), pp. 1098--1108, https://doi.org/10.1104/pp.107.113647.
2.
Y. Bar-Shalom and W. Blair, Multitarget-Multisensor Tracking: Applications and Advances, Vol. III, Artech House, Norwood, MA, 2000.
3.
S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems, Artech House, Norwood, MA, 1999.
4.
S. Bonneau, M. Dahan, and L. D. Cohen, Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume, IEEE Trans. Image Process., 14 (2005), pp. 1384--1395, https://doi.org/10.1109/TIP.2005.852794.
5.
L. G. Brown, A survey of image registration techniques, ACM Comput. Surv., 24 (1992), pp. 325--376.
6.
R. H. Byrd, M. E. Hribar, and J. Nocedal, An interior point algorithm for large-scale nonlinear programming, SIAM J. Optim., 9 (1999), pp. 877--900, https://doi.org/10.1137/S1052623497325107.
7.
G. Carlsson, Topology and data, Bull. Amer. Math. Soc. (N.S.), 46 (2009), pp. 255--308.
8.
K. Celler, G. P. van Wezel, and J. Willemse, Single particle tracking of dynamically localizing tata complexes in streptomyces coelicolor, Biochem. Biophys. Rese. Commun., 438 (2013), pp. 38--42, https://doi.org/10.1016/j.bbrc.2013.07.016.
9.
N. Chenouard, I. Bloch, and J.-C. Olivo-Marin, Multiple hypothesis tracking in microscopy images, in 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, Piscataway, NJ, 2009, pp. 1346--1349, https://doi.org/10.1109/ISBI.2009.5193314.
10.
N. Chenouard, I. Bloch, and J.-C. Olivo-Marin, Multiple hypothesis tracking for cluttered biological image sequences, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013), pp. 2736--3750, https://doi.org/10.1109/TPAMI.2013.97.
11.
N. Chenouard, I. Smal, F. De Chaumont, M. Maška, I. F. Sbalzarini, Y. Gong, J. Cardinale, C. Carthel, S. Coraluppi, M. Winter, et al., Objective comparison of particle tracking methods, Nature Methods, 11 (2014), pp. 281--289, https://doi.org/10.1038/nmeth.2808.
12.
S. J. Clough and A. F. Bent, Floral dip: A simplified method foragrobacterium-mediated transformation ofarabidopsis thaliana, Plant J., 16 (1998), pp. 735--743.
13.
D. Collings, J. Harper, J. Marc, R. Overall, and L. Mullen, Life in the fast lane: Actin-based motility of plant peroxisomes, Can. J. Bot., 80 (2002), pp. 430--441, https://doi.org/10.1139/b02-036.
14.
J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp., 19 (1965), pp. 297--301.
15.
S. Coraluppi and C. Carthel, Multi-stage multiple-hypothesis tracking, J. Adv. Inf. Fusion, 6 (2011), pp. 57--67.
16.
G. Danuser, Computer vision in biology, Cell, 147 (2011), pp. 973--978, https://doi.org/10.1016/j.cell.2011.11.001.
17.
F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, and J.-C. Olivo-Marin, Icy: An open bioimage informatics platform for extended reproducible research, Nat. Methods, 9 (2012), pp. 690--696, https://doi.org/10.1038/nmeth.2075.
18.
M. Dimiccoli, J.-P. Jacob, and L. Moisan, Particle detection and tracking in fluorescence time-lapse imaging: A contrario approach, Mach. Vis. Appl., 27 (2016), pp. 511--527, https://doi.org/10.1007/s00138-016-0757-7.
19.
A. Doucet, N. de Freitas, and N. Gordon, eds., Sequential Monte Carlo Methods in Practice, Statistics for Engineering and Information Science, Springer-Verlag, New York, 2001.
20.
A. Geitmann and A. Nebenführ, Navigating the plant cell: Intracellular transport logistics in the green kingdom, Mol. Biol. Cell, 26 (2015), pp. 3373--3378, https://doi.org/10.1091/mbc.E14-10-1482.
21.
W. R. Gilks and C. Berzuini, Following a moving target---Monte Carlo inference for dynamic Bayesian models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63 (2001), pp. 127--146, https://doi.org/10.1111/1467-9868.00280.
22.
R. Gutierrez, J. Lindeboom, A. Paredez, A. Emons, and D. Ehrhardt, Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments, Nat. Cell Biol., 11 (2009), pp. 797--806, https://doi.org/10.1038/ncb1886.
23.
T. Hamada, M. Tominaga, T. Fukaya, M. Nakamura, A. Nakano, Y. Watanabe, T. Hashimoto, and T. Baskin, Rna processing bodies, peroxisomes, Golgi bodies, mitochondria, and endoplasmic reticulum tubule junctions frequently pause at cortical microtubules, Plant Cell Physiol., 53 (2012), pp. 699--798, https://doi.org/10.1093/pcp/pcs025.
24.
J. Hughes, J. Fricks, and W. Hancock, Likelihood inference for particle location in fluorescence microscopy, Ann. Appl. Stat., (2010), pp. 830--848, https://doi.org/10.1214/09-AOAS299.
25.
A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: A review, ACM Comput. Surv., 31 (1999), pp. 264--323.
26.
A. Jaiswal, W. J. Godinez, M. J. Lehmann, and K. Rohr, Direct combination of multi-scale detection and multi-frame association for tracking of virus particles in microscopy image data, in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), IEEE, Piscataway, NJ, 2016, pp. 976--979, https://doi.org/10.1109/ISBI.2016.7493428.
27.
K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. Schmidt, and G. Danuser, Robust single-particle tracking in live-cell time-lapse sequences, Nat. Methods, 5 (2008), pp. 695--702, https://doi.org/10.1038/nmeth.1237.
28.
C. Kervrann, C. Ó. S. Sorzano, S. T. Acton, J.-C. Olivo-Marin, and M. Unser, A guided tour of selected image processing and analysis methods for fluorescence and electron microscopy, IEEE J. Sel. Topics Signal Process., 10 (2016), pp. 6--30, https://doi.org/10.1109/JSTSP.2015.2505402.
29.
J. S. Liu, Monte Carlo Strategies in Scientific Computing, Springer Series Statist., Springer, New York, 2008.
30.
J. S. Liu and R. Chen, Sequential Monte Carlo methods for dynamic systems, J. Amer. Statist. Assoc., 93 (1998), pp. 1032--1044.
31.
S. Liu, A. Matzavinos, and S. Sethuraman, Random walk distances in data clustering and applications, Adv. Data Anal. Classif., 7 (2013), pp. 83--108, https://doi.org/10.1007/s11634-013-0125-7.
32.
D. Logan and C. Leaver, Mitochondria-targeted gfp highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells, J. Exp. Bot., 51 (2000), pp. 865--871, https://doi.org/10.1093/jexbot/51.346.865.
33.
D. G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vision, 60 (2004), pp. 91--110, https://doi.org/10.1023/B:VISI.0000029664.99615.94.
34.
S. L. Madison, M. L. Buchanan, J. D. Glass, T. F. McClain, E. Park, and A. Nebenführ, Class xi myosins move specific organelles in pollen tubes and are required for normal fertility and pollen tube growth in arabidopsis, Plant Physiol., 169 (2015), pp. 1946--1960, https://doi.org/10.1104/pp.15.01161.
35.
K. E. Magnusson and J. Jaldén, A batch algorithm using iterative application of the Viterbi algorithm to track cells and construct cell lineages, in 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), IEEE, Piscataway, NJ, 2012, pp. 382--385, https://doi.org/10.1109/ISBI.2012.6235564.
36.
K. E. Magnusson, J. Jaldén, P. M. Gilbert, and H. M. Blau, Global linking of cell tracks using the Viterbi algorithm, IEEE Trans. Med. Imag., 34 (2015), pp. 911--929, https://doi.org/10.1109/TMI.2014.2370951.
37.
R. Mahler and V. Maroulas, Tracking spawning objects, IET Radar Sonar Navig., 7 (2013), pp. 321--331, https://doi.org/10.1049/iet-rsn.2012.0053.
38.
R. P. S. Mahler, Statistical Multisource-Multitarget Information Fusion, Artech House, Norwood, MA, 2007.
39.
V. Maroulas and A. Nebenführ, Tracking rapid intracellular movements: A Bayesian random set approach, Ann. Appl. Stat., 9 (2015), pp. 926--949, https://doi.org/10.1214/15-AOAS819.
40.
V. Maroulas and P. Stinis, Improved particle filters for multi-target tracking, J. Comput. Phys., 231 (2012), pp. 602--611, https://doi.org/10.1016/j.jcp.2011.09.023.
41.
A. Matov, M. M. Edvall, G. Yang, and G. Danuser, Optimal-flow minimum-cost correspondence assignment in particle flow tracking, Comput. Vis. Image Underst., 115 (2011), pp. 531--540, https://doi.org/10.1016/j.cviu.2011.01.001.
42.
J. Mazzaferri, J. Roy, S. Lefrancois, and S. Costantino, Adaptive settings for the nearest-neighbor particle tracking algorithm, Bioinformatics, 31 (2015), pp. 1279--1285, https://doi.org/10.1093/bioinformatics/btu793.
43.
A. Nebenführ, Identifying subcellular protein localization with fluorescent protein fusions after transient expression in onion epidermal cells, Plant Cell Morphogenesis: Methods and Protocols, Meth. Mol. Biol. 1080, Springer, New York, 2014, pp. 77--85, https://doi.org/10.1007/978-1-62703-643-6_6.
44.
A. Nebenführ, L. A. Gallagher, T. G. Dunahay, J. A. Frohlick, A. M. Mazurkiewicz, J. B. Meehl, and L. A. Staehelin, Stop-and-go movements of plant Golgi stacks are mediated by the actomyosin system, Plant Physiol., 121 (1999), pp. 1127--1141, https://doi.org/10.1104/pp.121.4.1127.
45.
B. K. Nelson, X. Cai, and A. Nebenführ, A multicolored set of in vivo organelle markers for co-localization studies in arabidopsis and other plants, Plant J., 51 (2007), pp. 1126--1136, https://doi.org/10.1111/j.1365-313X.2007.03212.x.
46.
A. Paredez, C. Somerville, and D. Ehrhardt, Visualization of cellulose synthase demonstrates functional association with microtubules, Science, 311 (2006), pp. 1491--1495, https://doi.org/10.1126/science.1126551.
47.
V. Racine, A. Hertzog, J. Jouanneau, J. Salamero, C. Kervrann, and J.-B. Sibarita, Multiple-target tracking of \textup3d fluorescent objects based on simulated annealing, in 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006, IEEE, Piscataway, NJ, 2006, pp. 1020--1023, https://doi.org/10.1109/ISBI.2006.1625094.
48.
G. Ren, V. Maroulas, and I. Schizas, Distributed sensors-targets spatiotemporal association and tracking, IEEE Trans. Aerosp. Electron. Syst., 51 (2015), pp. 2570--2589, https://doi.org/10.1109/TAES.2015.140042.
49.
D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min, S. Manley, and M. Unser, Quantitative evaluation of software packages for single-molecule localization microscopy, Nat. Methods, 12 (2015), pp. 717--724, https://doi.org/10.1038/nmeth.3442.
50.
C. Saint-Jore-Dupas, A. Nebenführ, A. Boulaflous, M.-L. Follet-Gueye, C. Plasson, C. Hawes, A. Driouich, L. Faye, and V. Gomord, Plant n-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway, The Plant Cell, 18 (2006), pp. 3182--3200, https://doi.org/10.1105/tpc.105.036400.
51.
I. F. Sbalzarini and P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology, J. Struct. Biol., 151 (2005), pp. 182--195, https://doi.org/10.1016/j.jsb.2005.06.002.
52.
M. Schiegg, P. Hanslovsky, B. X. Kausler, L. Hufnagel, and F. A. Hamprecht, Conservation tracking, in Proceedings of the IEEE International Conference on Computer Vision, IEEE, Piscataway, NJ, 2013, pp. 2928--2935, https://doi.org/10.1109/ICCV.2013.364.
53.
C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nih image to imagej: 25 years of image analysis, Nat. Methods, 9 (2012), pp. 671--675, https://doi.org/10.1038/nmeth.2089.
54.
A. S. Sebag, S. Plancade, C. Raulet-Tomkiewicz, R. Barouki, J.-P. Vert, and T. Walter, A generic methodological framework for studying single cell motility in high-throughput time-lapse data, Bioinformatics, 31 (2015), pp. i320--i328, https://doi.org/10.1093/bioinformatics/btv225.
55.
K. Shafique and M. Shah, A noniterative greedy algorithm for multiframe point correspondence, IEEE Trans. Pattern Anal. Mach. Intell., 27 (2005), pp. 51--65, https://doi.org/10.1109/ICCV.2003.1238321.
56.
G. Singh, F. Mémoli, and G. E. Carlsson, Topological methods for the analysis of high dimensional data sets and 3d object recognition, in Proceedings of the 2007 Symposium on Point Based Graphics, Prague, Czech Republic, Eurographics Association, Geneva, 2007, pp. 91--100, https://doi.org/10.2312/SPBG/SPBG07/091-100.
57.
I. Smal, Particle Filtering Methods for Subcellular Motion Analysis, Ph.D. thesis, Erasmus University Rotterdam, Rotterdam, The Netherlands, 2009.
58.
I. Smal, K. Draegestein, N. Galjart, W. Niessen, and E. Meijering, Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: Application to microtubule growth analysis, IEEE Trans. Med. Imag., 27 (2008), pp. 789--804, https://doi.org/10.1109/TMI.2008.916964.
59.
I. Smal, M. Loog, W. Niessen, and E. Meijering, Quantitative comparison of spot detection methods in fluorescence microscopy, IEEE Trans. Med. Imag., 29 (2010), pp. 282--301, https://doi.org/10.1109/TMI.2009.2025127.
60.
I. Smal, W. Niessen, and E. Meijering, Particle filtering for multiple object tracking in molecular cell biology, in Proceedings of the 2006 IEEE Nonlinear Statistical Signal Processing Workshop, IEEE, Piscataway, NJ, 2006, pp. 129--132, https://doi.org/10.1109/NSSPW.2006.437.
61.
G. A. Smith, S. P. Gross, and L. W. Enquist, Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons, Proc. Natl. Acad. Sci. U.S.A., 98 (2001), pp. 3466--3470, https://doi.org/10.1073/pnas.061029798.
62.
J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, Trackmate: An open and extensible platform for single-particle tracking, Methods, 115 (2016), pp. 80--90, https://doi.org/10.1016/j.ymeth.2016.09.016.
63.
C. Van Loan, Computational Frameworks for the Fast Fourier Transform, Frontiers Appl. Math. 10, SIAM, Philadelphia, 1992, https://doi.org/10.1137/1.9781611970999.
64.
J. K. Vick and A. Nebenführ, Putting on the breaks: Regulating organelle movements in plant cellsf, J. Integr. Plant Biol., 54 (2012), pp. 868--874, https://doi.org/10.1111/j.1744-7909.2012.01180.x.
65.
R. E. Williamson, Organelle movements, Annu. Rev. Plant Physiol. Plant Mol. Biol., 44 (1993), pp. 181--202.
66.
B. Zitova and J. Flusser, Image registration methods: A survey, Image Vision Comput., 21 (2003), pp. 977--1000, https://doi.org/10.1016/S0262-8856(03)00137-9.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 871 - 899
ISSN (online): 1936-4954

History

Submitted: 26 September 2016
Accepted: 29 March 2017
Published online: 13 June 2017

Keywords

  1. mathematical biology
  2. topological data analysis
  3. tracking
  4. cell imaging
  5. cytoplasmic streaming

MSC codes

  1. 92B05
  2. 62P10
  3. 94A08

Authors

Affiliations

Funding Information

Air Force Office of Scientific Research https://doi.org/10.13039/100000181 : FA9550-15-1-0103

Funding Information

National Institute for Mathematical and Biological Synthesis https://doi.org/10.13039/100008947 : DBI-1300426

Funding Information

Simons Foundation https://doi.org/10.13039/100000893 : 279870

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media