Abstract

This work is motivated by the need to study the impact of data uncertainties and material imperfections on the solution to optimal control problems constrained by partial differential equations. We consider a pathwise optimal control problem constrained by a diffusion equation with random coefficient together with box constraints for the control. For each realization of the diffusion coefficient we solve an optimal control problem using the variational discretization [M. Hinze, Comput. Optim. Appl., 30 (2005), pp. 45--61]. Our framework allows for lognormal coefficients whose realizations are not uniformly bounded away from zero and infinity. We establish finite element error bounds for the pathwise optimal controls. This analysis is nontrivial due to the limited spatial regularity and the lack of uniform ellipticity and boundedness of the diffusion operator. We apply the error bounds to prove convergence of a multilevel Monte Carlo estimator for the expected value of the pathwise optimal controls. In addition we analyze the computational complexity of the multilevel estimator. We perform numerical experiments in two-dimensional space to confirm the convergence result and the complexity bound.

MSC codes

  1. PDE-constrained optimization
  2. uncertainty quantification
  3. lognormal random fields
  4. control constraints
  5. variational discretization

MSC codes

  1. 35R60
  2. 49J20
  3. 60H35
  4. 65C05
  5. 65N30

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Springer Science+Business Media, New York, 2009.
2.
I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM Rev., 52 (2010), pp. 317--355, https://doi.org/10.1137/100786356.
3.
A. Barth, C. Schwab, and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients, Numer. Math., 119 (2011), pp. 123--161, https://doi.org/10.1007/s00211-011-0377-0.
4.
P. Benner, S. Dolgov, A. Onwunta, and M. Stoll, Low-rank solvers for unsteady Stokes-Brinkman optimal control problem with random data, Comput. Methods Appl. Mech. Engrg., 304 (2016), pp. 26--54, https://doi.org/10.1016/j.cma.2016.02.004.
5.
P. Benner, A. Onwunta, and M. Stoll, Block-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputs, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 491--518, https://doi.org/10.1137/15M1018502.
6.
C. Bierig and A. Chernov, Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems, Numer. Math., 130 (2015), pp. 579--613, https://doi.org/10.1007/s00211-014-0676-3.
7.
A. Borz\`\i, Multigrid and sparse-grid schemes for elliptic control problems with random coefficients, Comput. Vis. Sci., 13 (2010), pp. 153--160, https://doi.org/10.1007/s00791-010-0134-4.
8.
A. Borz\`\i, V. Schulz, C. Schillings, and G. von Winckel, On the treatment of distributed uncertainties in PDE-constrained optimization, GAMM-Mitt., 33 (2010), pp. 230--246, https://doi.org/10.1002/gamm.201010017.
9.
A. Borz\`\i and G. von Winckel, Multigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficients, SIAM J. Sci. Comput., 31 (2009), pp. 2172--2192, https://doi.org/10.1137/070711311.
10.
A. Borz\`\i and G. von Winckel, A POD framework to determine robust controls in PDE optimization, Comput. Vis. Sci., 14 (2011), pp. 91--103, https://doi.org/10.1007/s00791-011-0165-5.
11.
J. Charrier, Strong and weak error estimates for elliptic partial differential equations with random coefficients, SIAM J. Numer. Anal., 50 (2012), pp. 216--246, https://doi.org/10.1137/ 100800531.
12.
J. Charrier, R. Scheichl, and A. L. Teckentrup, Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods, SIAM J. Numer. Anal., 51 (2013), pp. 322--352, https://doi.org/10.1137/110853054.
13.
P. Chen and A. Quarteroni, Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint, SIAM/ASA J. Uncertain. Quantif., 2 (2014), pp. 364--396, https://doi.org/10.1137/130940517.
14.
P. Chen, A. Quarteroni, and G. Rozza, Stochastic optimal Robin boundary control problems of advection-dominated elliptic equations, SIAM J. Numer. Anal., 51 (2013), pp. 2700--2722, https://doi.org/10.1137/120884158.
15.
P. Chen, A. Quarteroni, and G. Rozza, Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations, Numer. Math., 133 (2016), pp. 67--102, https://doi.org/10.1007/s00211-015-0743-4.
16.
K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci., 14 (2011), pp. 3--15, https://doi.org/10.1007/s00791-011-0160-x.
17.
N. Collier, A.-L. Haji-Ali, F. Nobile, E. von Schwerin, and R. Tempone, A continuation multilevel Monte Carlo algorithm, BIT, 55 (2015), pp. 399--432, https://doi.org/10.1007/s10543-014-0511-3.
18.
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl. 152, 2nd ed., Cambridge University Press, Cambridge, UK 2014, https://doi.org/10.1017/CBO9781107295513.
19.
T. J. Dodwell, C. Ketelsen, R. Scheichl, and A. L. Teckentrup, A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 1075--1108.
20.
S. Garreis and M. Ulbrich, Constrained Optimization with Low-Rank Tensors and Applications to Parametric Problems with PDEs, SIAM J. Sci. Comput., 39 (2017), pp. A25--A54.
21.
R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Courier Corporation, North Chelmsford, MA, 2003.
22.
M. B. Giles, Multilevel Monte Carlo path simulation, Oper. Res., 56 (2008), pp. 607--617, https://doi.org/10.1287/opre.1070.0496.
23.
M. B. Giles, T. Nagapetyan, and K. Ritter, Multilevel Monte Carlo approximation of distribution functions and densities, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 267--295, https://doi.org/10.1137/140960086.
24.
W. Gong, H. Xie, and N. Yan, A multilevel correction method for optimal controls of elliptic equations, SIAM J. Sci. Comput., 37 (2015), pp. A2198--A2221, https://doi.org/10.1137/140990255.
25.
I. G. Graham, R. Scheichl, and E. Ullmann, Mixed finite element analysis of lognormal diffusion and multilevel Monte Carlo methods, Stoch. Partial Differ. Equ. Anal. Comput., 4 (2016), pp. 41--75, https://doi.org/10.1007/s40072-015-0051-0.
26.
M. Gunzburger and J. Ming, Optimal control of stochastic flow over a backward-facing step using reduced-order modeling, SIAM J. Sci. Comput., 33 (2011), pp. 2641--2663, https://doi.org/10.1137/100817279.
27.
M. D. Gunzburger, H.-C. Lee, and J. Lee, Error estimates of stochastic optimal Neumann boundary control problems, SIAM J. Numer. Anal., 49 (2011), pp. 1532--1552, https://doi.org/10.1137/100801731.
28.
M. D. Gunzburger, C. G. Webster, and G. Zhang, Stochastic finite element methods for partial differential equations with random input data, Acta Numer., 23 (2014), pp. 521--650, https://doi.org/10.1017/S0962492914000075.
29.
W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment, Springer Ser. Comput. Math. 18, Springer, New York, 1992.
30.
M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl., 30 (2005), pp. 45--61, https://doi.org/10.1007/s10589-005-4559-5.
31.
M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, Math. Modell. Theory Appl. 23, Springer, New York, 2009.
32.
M. Hinze and M. Vierling, A globalized semi-smooth Newton method for variational discretization of control constrained elliptic optimal control problems, in Constrained Optimization and Optimal Control for Partial Differential Equations, Internat. Ser. Numer. Math. 160, Springer, Basel, 2012, pp. 171--182.
33.
L. S. Hou, J. Lee, and H. Manouzi, Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs, J. Math. Anal. Appl., 384 (2011), pp. 87--103, https://doi.org/10.1016/j.jmaa.2010.07.036.
34.
R. Kornhuber, C. Schwab, and M.-W. Wolf, Multilevel Monte Carlo finite element methods for stochastic elliptic variational inequalities, SIAM J. Numer. Anal., 52 (2014), pp. 1243--1268, https://doi.org/10.1137/130916126.
35.
D. P. Kouri, A multilevel stochastic collocation algorithm for optimization of PDEs with uncertain coefficients, SIAM/ASA J. Uncertain. Quantif., 2 (2014), pp. 55--81, https://doi.org/10.1137/130915960.
36.
D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty, SIAM J. Sci. Comput., 35 (2013), pp. A1847--A1879, https://doi.org/10.1137/120892362.
37.
D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders, Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty, SIAM J. Sci. Comput., 36 (2014), pp. A3011--A3029, https://doi.org/10.1137/140955665.
38.
A. Kunoth and C. Schwab, Analytic regularity and GPC approximation for control problems constrained by linear parametric elliptic and parabolic PDEs, SIAM J. Control Optim., 51 (2013), pp. 2442--2471, https://doi.org/10.1137/110847597.
39.
A. Kunoth and C. Schwab, Sparse adaptive tensor Galerkin approximations of stochastic PDE-constrained control problems, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 1034--1059.
40.
M. Lazar and E. Zuazua, Averaged control and observation of parameter-depending wave equations, C. R. Math. Acad. Sci. Paris, 352 (2014), pp. 497--502, https://doi.org/10.1016/j.crma.2014.04.007.
41.
H.-C. Lee and J. Lee, A stochastic Galerkin method for stochastic control problems, Commun. Comput. Phys., 14 (2013), pp. 77--106.
42.
G. J. Lord, C. E. Powell, and T. Shardlow, An introduction to computational stochastic PDEs, Cambridge Texts in Appl. Math., Cambridge University Press, New York, 2014, https://doi.org/10.1017/CBO9781139017329.
43.
F. Negri, A. Manzoni, and G. Rozza, Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations, Comput. Math. Appl., 69 (2015), pp. 319--336, https://doi.org/10.1016/j.camwa.2014.12.010.
44.
F. Negri, G. Rozza, A. Manzoni, and A. Quarteroni, Reduced basis method for parametrized elliptic optimal control problems, SIAM J. Sci. Comput., 35 (2013), pp. A2316--A2340, https://doi.org/10.1137/120894737.
45.
A. Rösch, Error estimates for linear-quadratic control problems with control constraints, Optim. Methods Softw., 21 (2006), pp. 121--134.
46.
E. Rosseel and G. N. Wells, Optimal control with stochastic PDE constraints and uncertain controls, Comput. Methods Appl. Mech. Engrg., 213/216 (2012), pp. 152--167, https://doi.org/10.1016/j.cma.2011.11.026.
47.
A. L. Teckentrup, R. Scheichl, M. B. Giles, and E. Ullmann, Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients, Numer. Math., 125 (2013), pp. 569--600, https://doi.org/10.1007/s00211-013-0546-4.
48.
H. Tiesler, R. M. Kirby, D. Xiu, and T. Preusser, Stochastic collocation for optimal control problems with stochastic PDE constraints, SIAM J. Control Optim., 50 (2012), pp. 2659--2682, https://doi.org/10.1137/110835438.
49.
E. Zuazua, Averaged control, Automatica J. IFAC, 50 (2014), pp. 3077--3087, https://doi.org/10.1016/j.automatica.2014.10.054.

Information & Authors

Information

Published In

cover image SIAM/ASA Journal on Uncertainty Quantification
SIAM/ASA Journal on Uncertainty Quantification
Pages: 466 - 492
ISSN (online): 2166-2525

History

Submitted: 13 October 2016
Accepted: 17 January 2017
Published online: 27 April 2017

MSC codes

  1. PDE-constrained optimization
  2. uncertainty quantification
  3. lognormal random fields
  4. control constraints
  5. variational discretization

MSC codes

  1. 35R60
  2. 49J20
  3. 60H35
  4. 65C05
  5. 65N30

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media