Abstract

The recovery of three calibrated cameras from image data is investigated using tools from computational algebraic geometry. We determine the algebraic degree for various minimal problems. Our formulation is based on the calibrated trifocal variety in computer vision, which is the configuration space for three calibrated cameras. Some of our calculations are done using homotopy continuation software, and so they rely on pseudo-randomness and numerical accuracy.

Keywords

  1. calibrated trifocal variety
  2. minimal problems
  3. numerical algebraic geometry

MSC codes

  1. 14M20
  2. 14Q15
  3. 14N99
  4. 15A69
  5. 65H20
  6. 68T45

Formats available

You can view the full content in the following formats:

Supplementary Material


PLEASE NOTE: These supplementary files have not been peer-reviewed.


Index of Supplementary Materials

Title of paper: Minimal Problems for the Calibrated Trifocal Variety

Author: Joe Kileel

File: DATA.zip

Type: compressed file

Contents: 1 random instance and its solution set, per minimal problem in Theorem 6.

Justification: the output of the computational proof of Theorem 6; could be used as start solutions in homotopies to solve other instances of the minimal problems

References

1.
S. Agarwal, N. Snavely, I. Simon, S.M. Seitz, and R. Szeliski, Building Rome in a day, in Proceedings of the International Conference on Computer Vision, 2009, pp. 72--79, https://doi.org/10.1145/2001269.2001293.
2.
C. Aholt and L. Oeding, The ideal of the trifocal variety, Math. Comp., 83 (2014), pp. 2553--2574, https://doi.org/10.1090/S0025-5718-2014-02842-1.
3.
C. Aholt, B. Sturmfels, and R. Thomas, A Hilbert scheme in computer vision, Canad. J. Math., 65 (2013), pp. 961--988, https://doi.org/10.4153/CJM-2012-023-2.
4.
A. Alzati and A. Tortora, A geometric approach to the trifocal tensor, J. Math. Imaging Vision, 38 (2010), pp. 159--170, https://doi.org/10.1007/s10851-010-0216-4.
5.
D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Bertini: Software for numerical algebraic geometry, available online at http://bertini.nd.edu, https://doi.org/10.7274/R0H41PB5.
6.
D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Numerically Solving Polynomial Systems with Bertini, Software Environ. Tools 25, SIAM, Philadelphia, 2013.
7.
J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997, https://doi.org/10.1137/1.9781611971446.
8.
D. Eisenbud, Commutative Algebra: With a View toward Algebraic Geometry, Grad. Texts Math. 150, Springer-Verlag, New York, 1995, https://doi.org/10.1007/978-1-4612-5350-1.
9.
M. Fischler and R. Bolles, Random sample consensus: A paradigm for model fitting with application to image analysis and automated cartography, Comm. ACM, 24 (1981), pp. 381--395, https://doi.org/10.1145/358669.358692.
10.
D. Grayson and M. Stillman, Macaulay2, a software system for research in algebraic geometry, available online at http://www.math.uiuc.edu/Macaulay2/.
11.
R.I. Hartley, Lines and points in three views and the trifocal tensor, Int. J. Comput. Vision, 22 (1997), pp. 125--140, https://doi.org/10.1023/A:1007936012022.
12.
R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer-Verlag, New York, 1977, https://doi.org/10.1007/978-1-4757-3849-0.
13.
R.I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, Cambridge, UK, 2003, https://doi.org/10.1017/CBO9780511811685.
14.
J.D. Hauenstein and J.I. Rodriguez, Numerical Irreducible Decomposition of Multiprojective Varieties, preprint, https://arxiv.org/abs/1507.07069v2, 2017.
15.
J.D. Hauenstein, J.I. Rodriguez, and F. Sottile, Numerical computation of Galois groups, Found. Comput. Math., to appear, https://doi.org/10.1007/s10208-017-9356-x.
16.
J.D. Hauenstein and A.J. Sommese, Witness sets of projections, Appl. Math. Comput., 217 (2010), pp. 3349--3354, https://doi.org/10.1016/j.amc.2010.08.067.
17.
J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Regeneration homotopies for solving systems of polynomials, Math. Comp., 80 (2011), pp. 345--377, https://doi.org/10.1090/S0025-5718-2010-02399-3.
18.
A. Heyden, Tensorial properties of multiple view constraints, Math. Methods Appl. Sci., 23 (2000), pp. 169--202, https://doi.org/10.1002/(SICI)1099-1476(20000125)23:2<169::AID-MMA110>3.0.CO;2-Y.
19.
F. Kahl, B. Triggs, and K. \AAström, Critical motions for auto-calibration when some intrinsic parameters can vary, J. Math. Imaging Vision, 13 (2004), pp. 131--146, https://doi.org/10.1023/A:1026524030731.
20.
Z. Kukelova, Algebraic Methods in Computer Vision, Doctoral Thesis, Czech Technical University in Prague, Prague, Czech Republic, 2013.
21.
J.M. Landberg, Tensors: Geometry and Applications, Grad. Stud. Math. 128, American Mathematical Society, Providence, RI, 2012, https://doi.org/10.1090/gsm/128.
22.
A. Leykin, J.I. Rodriguez, and F. Sottile, Trace Test, preprint, https://arxiv.org/abs/1608.00540v2, 2017.
23.
D.G. Lowe, Object recognition from local scale-invariant features, in Proceedings of the International Conference on Computer Vision, 1999, pp. 1150--1157.
24.
E. Martyushev, On some properties of calibrated trifocal tensors, J. Math. Imaging Vision, 58 (2017), pp. 321--332, https://doi.org/10.1007/s10851-017-0712-x.
25.
J. Matthews, Multi-focal Tensors as Invariant Differential Forms, preprint, https://arxiv.org/abs/1610.04294v1, 2016.
26.
S. Maybank, Theory of Reconstruction from Image Motion, Springer-Verlag, Berlin, 1993, https://doi.org/10.1007/978-3-642-77557-4.
27.
D. Nistér, An efficient solution to the five-point relative pose problem, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), pp. 756--770, https://doi.org/10.1109/TPAMI.2004.17.
28.
M. Oskarsson, A. Zisserman, and K. \AA ström, Minimal projective reconstruction for combinations of points and lines in three views, Image Vision Comput., 22 (2004), pp. 777--785, https://doi.org/10.1016/j.imavis.2004.02.004.
29.
M.E. Spetsakis and J. Aloimonos, A unified theory of structure from motion, in Proceedings of the DARPA Image Understanding Workshop, 1990, pp. 271--283.
30.
A.J. Sommese, J. Verschelde, and C.W. Wampler, Symmetric functions applied to decomposing solution sets of polynomial systems, SIAM J. Numer. Anal., 40 (2002), pp. 2012--2046, https://doi.org/10.1137/S0036142901397101.
31.
A.J. Sommese and C.W. Wampler, The Numerical Solution of Systems of Polynomials, World Scientific, Hackensack, NJ, 2005, https://doi.org/10.1142/9789812567727.
32.
M. Trager, J. Ponce, and M. Hebert, Trinocular geometry revisited, Int. J. Comput. Vision, 120 (2016), pp. 134--152, https://doi.org/10.1007/s11263-016-0900-y.
33.
J. Weng, T.S. Huang, and N. Ahuja, Motion and structure from line correspondences: Closed-form solution, uniqueness, and optimization, IEEE Trans. Patten Anal., 14 (1992), pp. 318--336, https://doi.org/10.1109/34.120327.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Algebra and Geometry
SIAM Journal on Applied Algebra and Geometry
Pages: 575 - 598
ISSN (online): 2470-6566

History

Submitted: 21 November 2016
Accepted: 3 July 2017
Published online: 26 September 2017

Keywords

  1. calibrated trifocal variety
  2. minimal problems
  3. numerical algebraic geometry

MSC codes

  1. 14M20
  2. 14Q15
  3. 14N99
  4. 15A69
  5. 65H20
  6. 68T45

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media