Abstract

We propose a multiscale model for the study of blood flow, plasma filtration, and non-Fickian mass transport by a coronary drug-eluting stent. We derive an analytic solution of a one-dimensional model for non-Fickian diffusion and replace the problem of drug transport in the coating of the stent with suitable boundary conditions. In this way, the computational cost of numerical simulations in realistic three-dimensional stent geometries is reduced. Numerical experiments to show the effectiveness of the method are also presented.

Keywords

  1. drug-eluting stents
  2. drug delivery
  3. non-Fickian diffusion
  4. multiscale models

MSC codes

  1. 65M60
  2. 35Q30
  3. 35A20

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. P. Abraham, J. M. Gorman, E. M. Sparrow, J. R. Stark, and R. E. Kohler, A mass transfer model of temporal drug deposition in artery walls, Int. J. Heat Mass Transfer, 58 (2013), pp. 632--638, https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.053.
2.
J. P. Abraham, E. M. Sparrow, and R. D. Lovik, Unsteady, three-dimensional fluid mechanic analysis of blood flow in plaque-narrowed and plaque-free arteries, Int. J. Heat Mass Transfer, 51 (2008), pp. 5633--5641, https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.038.
3.
J. P. Abraham, J. R. Stark, J. M. Gorman, E. M. Sparrow, and R. E. Kohler, A model of drug deposition within artery walls, J. Med. Device, 7 (2013), Paper MED-13-1028, https://doi.org/10.1115/1.4024321.
4.
H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity, An Introduction, Springer, New York, 2008.
5.
A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32 (1982), pp. 199--259, https://doi.org/10.1016/0045-7825(82)90071-8.
6.
G. Camera-Roda and G. C. Sarti, Mass transport with relaxation in polymers, AIChE J., 36 (1990), pp. 851--860, https://doi.org/10.1002/aic.690360606.
7.
D. S. Cohen and A. B. White, Jr., Sharp fronts due to diffusion and viscoelastic relaxation in polymers, SIAM J. Appl. Math., 51 (1991), pp. 472--483, https://doi.org/10.1137/0151023.
8.
E. Cutrì, P. Zunino, S. Morlacchi, C. Chiastra, and F. Migliavacca, Drug delivery patterns for different stenting techniques in coronary bifurcations: A comparative computational study, Biomech. Model. Mechanobiol., 12 (2013), pp. 657--669, https://doi.org/10.1007/s10237-012-0432-5.
9.
C. D'Angelo and P. Zunino, Robust numerical approximation of coupled Stokes and Darcy's flows applied to vascular hemodynamics and biochemical transport, Math. Model. Numer. Anal., 45 (2011), pp. 447--476, https://doi.org/10.1051/m2an/2010062.
10.
C. D'Angelo, P. Zunino, A. Porpora, S. Morlacchi, and F. Migliavacca, Model reduction strategies enable computational analysis of controlled drug release from cardiovascular stents, SIAM J. Appl. Math., 71 (2011), pp. 2312--2333, https://doi.org/10.1137/10081695X.
11.
D. A. Edwards, Non-Fickian diffusion in thin polymer films, J. Polymer Sci. Phys., 34 (1996), pp. 981--997, https://doi.org/10.1002/(SICI)1099-0488(19960415)34:5<981::AID-POLB16>3.0.CO;2-7.
12.
J. A. Ferreira, M. Grassi, E. Gudin͂o, and P. de Oliveira, A 3D model for mechanistic control of drug release, SIAM J. Appl. Math., 74 (2014), pp. 620--633, https://doi.org/10.1137/130930674.
13.
J. A. Ferreira, M. Grassi, E. Gudin͂o, and P. de Oliveira, A new look to non-Fickian diffusion, Appl. Math. Model., 39 (2015), pp. 194--204, https://doi.org/10.1016/j.apm.2014.05.030.
14.
L. Formaggia, A. Quarteroni, and A. Veneziani, Cardiovascular Mathematics---Modeling and Simulation of the Circulatory System, Springer-Verlag, Milan, 2009.
15.
I. Gradus-Pizlo, B. Bigelow, Y. Mahomed, S. G. Sawada, K. Rieger, and H. Feigenbaum, Left anterior descending coronary artery wall thickness measured by high-frequency transthoracic and epicardial echocardiography includes adventitia, Am. J. Cardiol., 91 (2003), pp. 27--32, https://doi.org/10.1016/S0002-9149(02)02993-4.
16.
M. Grassi and G. Grassi, Mathematical modeling and controlled drug delivery: Matrix systems, Curr. Drug Deliv., 2 (2005), pp. 97--116, https://doi.org/10.2174/1567201052772906.
17.
E. Gudin͂o and A. Sequeira, 3d mathematical model for blood flow and non-Fickian mass transport by a coronary drug-eluting stent, Appl. Math. Model., 46 (2017), pp. 161--180, https://doi.org/10.1016/j.apm.2017.01.057.
18.
M. Horner, S. Joshi, V. Dhruva, S. Sett, and S. F. C. Stewart, A two-species drug delivery model is required to predict deposition from drug-eluting stents, Cardiovasc. Eng. Technol., 1 (2010), pp. 225--234, https://doi.org/10.1007/s13239-010-0016-4.
19.
S. S. Hossain, S. F. A. Hossainy, Y. Bazilevs, V. M. Calo, and T. J. R. Hughes, Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls, Comput. Mech., 49 (2011), pp. 213--242, https://doi.org/10.1007/s00466-011-0633-2.
20.
M. Iasiello, K. Vafai, A. Andreozzi, and N. Bianco, Analysis of non-Newtonian effects on low-density lipoprotein accumulation in an artery, J. Biomech., 49 (2016), pp. 1437--1446, https://doi.org/10.1016/j.jbiomech.2016.03.017.
21.
M. Iasiello, K. Vafai, A. Andreozzi, and N. Bianco, Low-density lipoprotein transport through an arterial wall under hyperthermia and hypertension conditions---An analytical solution, J. Biomech., 49 (2016), pp. 193--204, https://doi.org/10.1016/j.jbiomech.2015.12.015.
22.
S. McGinty, A decade of modelling drug release from arterial stents, Math. Biosci., 257 (2014), pp. 80--90, https://doi.org/10.1016/j.mbs.2014.06.016.
23.
S. McGinty and G. Pontrelli, A general model of coupled drug release and tissue absorption for drug delivery devices, J. Control. Release, 217 (2015), pp. 327--336, https://doi.org/10.1016/j.jconrel.2015.09.025.
24.
S. McGinty and G. Pontrelli, On the role of specific drug binding in modelling arterial eluting stents, J. Math. Chem., 54 (2016), pp. 967--976, https://doi.org/10.1007/s10910-016-0618-7.
25.
S. McGinty, M. Wheel, S. McKee, and C. McCormick, Does anisotropy promote spatial uniformity of stent-delivered drug distribution in arterial tissue?, Int. J. Heat Mass Transfer, 90 (2015), pp. 266--279, https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.061.
26.
C. M. McKittrick, S. Kennedy, K. G. Oldroyd, S. McGinty, and C. McCormick, Modelling the impact of atherosclerosis on drug release and distribution from coronary stents, Ann. Biomed. Eng., 44 (2016), pp. 477--487, https://doi.org/10.1007/s10439-015-1456-7.
27.
F. Migliavacca, F. Gervaso, M. Prosi, P. Zunino, S. Minisini, L. Formaggia, and G. Dubini, Expansion and drug elution model of a coronary stent, Comput. Methods Biomech. Biomed. Eng., 10 (2007), pp. 63--73, https://doi.org/10.1080/10255840601071087.
28.
B. D. Plourde, L. J. Vallez, B. Sun, B. B. Nelson-Cheeseman, J. P. Abraham, and C. S. Staniloae, Alterations of blood flow through arteries following atherectomy and the impact on pressure variation and velocity, Cardiovasc. Eng. Tech., 7 (2016), pp. 280--289, https://doi.org/10.1007/s13239-016-0269-7.
29.
A. R. Tzafriri, A. D. Levin, and E. R. Edelman, Diffusion-limited binding explains binary dose response for local arterial and tumour drug delivery, Cell Prolif., 42 (2009), pp. 348--362, https://doi.org/10.1111/j.1365-2184.2009.00602.x.
30.
G. Vairo, M. Cioffi, R. Cottone, G. Dubini, and F. Migliavacca, Drug release from coronary eluting stents: A multi domain approach, J. Biomech., 43 (2010), pp. 1580--1589, https://doi.org/10.1016/j.jbiomech.2010.01.033.
31.
B. L. van der Hoeven, N. M. M. Pires, H. M. Warda, P. V. Oemrawsingh, B. J. M. van Vlijmen, P. H. A. Quax, M. J. Schalij, E. E. van der Wall, and J. W. Jukema, Drug-eluting stents: Results, promises and problems, Int. J. Cardiol., 99 (2005), pp. 9--17, https://doi.org/10.1016/j.ijcard.2004.01.021.
32.
C. Vergara and P. Zunino, Multiscale boundary conditions for drug release from cardiovascular stents, Multiscale Model. Simul., 7 (2008), pp. 565--588, https://doi.org/10.1137/07070214X.
33.
P. Zunino, C. D'Angelo, L. Petrini, C. Vergara, C. Capelli, and F. Migliavacca, Numerical simulation of drug eluting coronary stents: Mechanics, fluid dynamics and drug release, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 120--124, https://doi.org/10.1016/j.cma.2008.07.019.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 1184 - 1203
ISSN (online): 1095-712X

History

Submitted: 13 December 2016
Accepted: 25 April 2017
Published online: 3 August 2017

Keywords

  1. drug-eluting stents
  2. drug delivery
  3. non-Fickian diffusion
  4. multiscale models

MSC codes

  1. 65M60
  2. 35Q30
  3. 35A20

Authors

Affiliations

Funding Information

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior https://doi.org/10.13039/501100002322 : EXCL/MAT-NAN/0114/2012
Fundação de Amparo à Pesquisa do Estado de São Paulo https://doi.org/10.13039/501100001807 : 2013/07375-0
Conselho Nacional de Desenvolvimento Científico e Tecnológico https://doi.org/10.13039/501100003593 : 307459/2016-0

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media