Abstract

We present an original adaptive scheme using a dynamically refined grid for the simulation of the six-dimensional Vlasov--Poisson equations. The distribution function is represented in a hierarchical basis that retains only the most significant coefficients. This allows considerable savings in terms of computational time and memory usage. The proposed scheme involves the mathematical formalism of multiresolution analysis and computer implementation of adaptive mesh refinement. We apply a finite difference method to approximate the Vlasov--Poisson equations, although other numerical methods could be considered. Numerical experiments are presented for the $d$-dimensional Vlasov--Poisson equations in the full $2d$-dimensional phase space for $d=1,2$, or 3. The six-dimensional case is compared to a Gadget N-body simulation.

Keywords

  1. adaptive mesh refinement
  2. hierarchical basis
  3. wavelet
  4. multiresolution analysis
  5. finite differences
  6. phase-space simulations
  7. Vlasov--Poisson equations
  8. astrophysics

MSC codes

  1. 65M05
  2. 65M50
  3. 85-08

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
T. Abel, O. Hahn, and R. Kaehler, Tracing the dark matter sheet in phase space, MNRAS, 427 (2012), pp. 61--76.
2.
S. von Alfthan, D. Pokhotelov, Y. Kempf, S. Hoilijoki, I. Honkonen, A. Sandroos, and M. Palmroth, Vlasiator: First global hybrid-Vlasov simulations of Earth's foreshock and magnetosheath, J. Atmospheric Solar-Terrestrial Phys., 120 (2014), pp. 24--35.
3.
V. A. Antonov, Solution to the problem concerning the stability of a stellar system with Emden's density law and with a spherical velocity distribution, Leningrad Univ. Bull., 19 (1962), pp. 96--111.
4.
T. D. Arber and R. G. L. Vann, A critical comparison of Eulerian-grid-based Vlasov solvers, J. Comput. Phys., 180 (2002), pp. 339--357.
5.
R. R. Arslanbekov, V. Kolobov, and A. Frolova, Kinetic solvers with adaptive mesh in phase space, Phys. Rev. E, 88 (2013), 063301.
6.
N. Besse, E. Deriaz, and E. Madaule, Adaptive multiresolution semi-Lagrangian discontinuous Galerkin methods for the Vlasov equations, J. Comput. Phys., 332 (2017), pp. 376--417. https://doi.org/10.1016/j.jcp.2016.12.003.
7.
N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker, and P. Bertrand, A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov--Maxwell system, J. Comput. Phys., 227 (2008), pp. 7889--7916.
8.
J. Binney and S. Tremaine, Galactic Dynamics, 2nd ed., Princeton Ser. Astrophys. 1987, Princeton University Press, Princeton, NJ, 2011.
9.
C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, Taylor & Francis, London, 1991.
10.
O. Bokanowski, J. Garcke, M. Griebel, and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations, J. Sci. Comput., 55 (2013), pp. 575--605.
11.
K. Brix, S. Melian, S. Müller, and M. Bachmann, Adaptive multi-resolution methods: Practical issues on data structures, implementation and parallelization, V. Louvet and M. Massot, eds., ESAIM Proc., 34 (2011), pp. 151--183.
12.
S. Brull and L. Mieussens, Local discrete velocity grids for deterministic rarefied flow simulations , J. Comput. Phys., 266 (2014), pp. 22--46.
13.
S. Brull, L. Forestier-Coste, and L. Mieussens, Two dimensional local adaptive discrete velocity grids for rarefied flow simulations, AIP Conf. Proc. 1786, American Institute of Physics, Melville, NY, 2016, 180002.
14.
J. Büchner, Vlasov-code simulation, in Proceedings of ISSS-7, 2005.
15.
C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33 (2011), pp. 1103--1133.
16.
A. J. Christlieb, Y. Liu, Q. Tang, and Z. Xu, Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations, SIAM J. Sci. Comput., 37 (2015), pp. A1825--A1845.
17.
A. Cohen, R. DeVore, G. Kerkyacharian, and D. Picard, Maximal spaces with given rate of convergence for thresholding algorithms, Appl. Comput. Harmon. Anal., 11 (2001), pp. 167--191.
18.
S. Colombi, T. Sousbie, S. Peirani, G. Plum, and Y. Suto, Vlasov versus N-body: The Hénon sphere, Monthly Not. Roy. Astronomical Soc., 450 (2015), pp. 3724--3741.
19.
G.-H. Cottet and P.-A. Raviart, Particle methods for the one-dimensional Vlasov--Poisson equations, SIAM J. Numer. Anal., 21 (1984), pp. 52--76.
20.
R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equations of mathematical physics, IBM J. Res. Development, (1967), pp. 215--234.
21.
I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61, SIAM, Philadelphia, 1992.
22.
P. Degond, F. Deluzet, L. Navoret, A.-B. Sun, and M.-H. Vignal, Asymptotic-preserving particle-in-cell method for the Vlasov--Poisson system near quasineutrality, J. Comput. Phys., 229 (2010), pp. 5630--5652.
23.
D. Del Sarto and E. Deriaz, A multigrid AMR algorithm for the study of magnetic reconnection, J. Comput. Phys., 351 (2017), https://doi.org/10.1016/j.jcp.2017.08.046.
24.
S. Delage Santacreu, Méthode de raffinement adaptatif hybride pour le suivi de fronts dans des écoulements incompressibles, Thèse de Mécanique de l'Univérsité Bordeaux I, 2006.
25.
E. Deriaz, Stability conditions for the numerical solution of convection-dominated problems with skew-symmetric discretizations, SIAM J. Numer. Anal., 50 (2012), pp. 1058--1085.
26.
E. Deriaz and V. Perrier, Direct numerical simulation of turbulence using divergence-free wavelets, SIAM Multiscale Model. Simul., 7 (2008), pp. 1101--1129.
27.
G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx., 5 (1989), pp. 49--68.
28.
R. A. DeVore, S. V. Konyagin, and V. N. Temlyakov, Hyperbolic wavelet approximation, Constr. Approx., 14 (1998), pp. 1--26.
29.
D. L. Donoho, Interpolating Wavelet Transforms, Technical report, Stanford University, 1992.
30.
M. Dumbser, V. A. Titarev, and S. V. Utyuzhnikov, Implicit multiblock method for solving a kinetic equation on unstructured meshes, Comput. Math. Math. Phys., 53 (2013), pp. 601--615 .
31.
B. Eliasson, Numerical simulations of the Fourier-transformed Vlasov-Maxwell system in higher dimensions---Theory and applications, J. Transport Theory Statist. Phys., 39 (2010), pp. 387--465.
32.
E. Fijalkow, Behaviour of phase-space holes in $2$D simulations, J. Plasma Phys., 61 (1999), pp. 65--76.
33.
F. Filbet, E. Sonnendrücker, and P. Bertrand, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172 (2001), pp. 166--187.
34.
F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Comput. Phys. Commun., 150 (2003), pp. 247--266.
35.
T. Fujiwara, Integration of the collisionless Boltzmann equation for spherical stellar systems, Publ. Astron. Soc. Japan, 35 (1983), pp. 547--558.
36.
M. Grandin, Data structures and algorithms for high-dimensional structured adaptive mesh refinement, Adv. Engineering Software, 82 (2015), pp. 75--86.
37.
W. Guo and Y. Cheng, A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations, SIAM J. Sci. Comput., 38 (2016), pp. A3381--A3409.
38.
E. Hairer, S. P. Nø rsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Ser. Comput. Math. 8, Springer-Verlag, Berlin, 1987.
39.
V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, and J. Vaclavik, L. Villard, A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation, J. Comput. Phys., 217 (2006), pp. 395--423.
40.
A. Harten, Multi-resolution algorithms for the numerical solution of hyperbolic conservation laws, Comm. Pure Appl. Math., 48 (1995), pp. 1305--1342.
41.
F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), pp. 251--265.
42.
J. A. F. Hittinger and J. W. Banks, Block-structured adaptive mesh refinement algorithms for Vlasov simulation, J. Comput. Phys., 241 (2013), pp. 118--140.
43.
O. Hoenen and E. Violard, Load-balancing for a block-based parallel adaptive 4D Vlasov solver, in Proceedings of the 14th International Euro-Par Conference, 2008.
44.
M. Holmström, Solving hyperbolic PDEs using interpolating wavelets, SIAM J. Sci. Comput., 21 (1999), pp. 405--420.
45.
N. K.-R. Kevlahan and O. V. Vasilyev, An adaptive wavelet collocation method for fluid-structure interaction, SIAM J. Sci. Comput., 26 (2005), pp. 1894--1915.
46.
V. I. Kolobov and R. R. Arslanbekov, Towards adaptive kinetic-fluid simulations of weakly ionized plasmas, J. Comput. Phys., 231 (2012), pp. 839--869.
47.
K. Kormann, A semi-Lagrangian Vlasov solver in tensor train format, SIAM J. Sci. Comput., 37 (2015), pp. B613--B632.
48.
T. Nakamura and T. Yabe, Cubic interpolated propagation scheme for solving hyper-dimensional Vlasov-Poisson equation in phase space, Comput. Phys. Commun., 120 (1999), pp. 122--154.
49.
I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295--2317.
50.
D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems, Ph.D. thesis, Technischen Universität München, 2010.
51.
N. Pham, P. Helluy, and L. Navoret, Hyperbolic approximation of the Fourier transformed Vlasov equation, ESAIM Proc., 45 (2014), pp. 379--389.
52.
S. Popinet, Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys., 190 (2003), pp. 572--600.
53.
O. Roussel, K. Schneider, A. Tsigulin, and H. Bockhorn, A conservative fully adaptive multi-resolution algorithm for parabolic PDEs, J. Comput. Phys., 188 (2003), pp. 493--523.
54.
A. Sandroos, I. Honkonena, S. von Alfthan, and M. Palmroth, Multi-GPU simulations of Vlasov's equation using Vlasiator, Parallel Comput., 39 (2013), pp. 306--318.
55.
K. Selim, A. Logg, and M. G. Larson, An adaptive finite element splitting method for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 209--212 (2011), pp. 54--65.
56.
C. Shen, J.-M. Qiu, and A. Christlieb, Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations, J. Comput. Phys., 230 (2011), pp. 3780--3802.
57.
E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Phys., 149 (1999), pp. 201--220.
58.
W. F. Spotz and G. F. Carey, High-order compact finite difference methods, in Proceedings of ICOSAM'95, 1995, pp. 397--408.
59.
V. Springel, The Cosmological Simulation Code, GADGET-2, MNRAS, 364 (2005), 1105.
60.
R. Teyssier, Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES, Astron. Astrophys., 385 (2002), pp. 337--364.
61.
K. Yoshikawa, N. Yoshida, and M. Umemura, Direct integration of the collisionless Boltzmann equation in six-dimensional phase space: Self-gravitating systems, Astrophys. J., 762 (2013), 116.
62.
O. Zanotti and M. Dumbser, A high order special relativistic hydrodynamic and magnetohydrodynamic code with space-time adaptive mesh refinement, Comput. Phys. Commun., 188 (2015), pp. 110--127.

Information & Authors

Information

Published In

cover image Multiscale Modeling & Simulation
Multiscale Modeling & Simulation
Pages: 583 - 614
ISSN (online): 1540-3467

History

Submitted: 20 December 2016
Accepted: 5 January 2018
Published online: 3 April 2018

Keywords

  1. adaptive mesh refinement
  2. hierarchical basis
  3. wavelet
  4. multiresolution analysis
  5. finite differences
  6. phase-space simulations
  7. Vlasov--Poisson equations
  8. astrophysics

MSC codes

  1. 65M05
  2. 65M50
  3. 85-08

Authors

Affiliations

Funding Information

Agence Nationale de la Recherche https://doi.org/10.13039/501100001665 : ANR-13-MONU-0003
FP7 Fusion Energy Research https://doi.org/10.13039/100011270 : EURATOM-CfP-QP14-ER-01/IPP-03

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.