Abstract

In shape optimization it is desirable to obtain deformations of a given mesh without negative impact on the mesh quality. We propose a new algorithm using least square formulations of the Cauchy--Riemann equations. Our method allows us to deform meshes in a nearly conformal way and thus approximately preserves the angles of triangles during the optimization process. The performance of our methodology is shown by applying our method to some unconstrained shape functions and a constrained Stokes shape optimization problem.

Keywords

  1. PDE constrained shape optimization
  2. grid deformation
  3. Cauchy--Riemann equations
  4. conformal mappings

MSC codes

  1. 49Q10
  2. 93B40
  3. 65D99
  4. 46E22

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. Attouch, Viscosity solutions of minimization problems, SIAM J. Optim., 6 (1996), pp. 769--806, https://doi.org/10.1137/S1052623493259616.
2.
H. Begehr, Boundary value problems in complex analysis I, Bol. Asoc. Mat. Venez., 12 (2005), pp. 65--85.
3.
J. Conway, Functions of One Complex Variable I, Springer, New York, Berlin, 1978.
4.
M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2nd ed., SIAM, Philadelphia, 2011, https://doi.org/10.1137/1.9780898719826.
5.
R. P. Dwight, Robust mesh deformation using the linear elasticity equations, in Computational Fluid Dynamics 2006, Springer, Berlin, Heidelberg, 2009, pp. 401--406.
6.
M. Eigel and K. Sturm, Reproducing kernel Hilbert spaces and variable metric algorithms in PDE-constrained shape optimization, Optim. Methods Softw., (2018), pp. 268--296.
7.
K. Eppler, S. Schmidt, V. Schulz, and C. Ilic, Preconditioning the pressure tracking in fluid dynamics by shape Hessian information, J. Optim. Theory Appl., 141 (2009), pp. 513--531.
8.
T. Gamelin, Complex Analysis, Springer Science & Business Media, New York, 2003.
9.
J. D. Gray and S. A. Morris, When is a function that satisfies the Cauchy-Riemann equations analytic?, Amer. Math. Monthly, 85 (1978), pp. 246--256.
10.
X. Gu and S.-T. Yau, Global conformal surface parameterization, in Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP '03, Eurographics Association, Aire-la-Ville, Switzerland, 2003, pp. 127--137.
11.
B. T. Helenbrook, Mesh deformation using the biharmonic operator, Internat. J. Numer. Methods Engrg., 56 (2003), pp. 1007--1021.
12.
P. Hood and C. Taylor, Navier-Stokes equations using mixed interpolation, in Finite Element Methods in Flow Problems, UAH Press, Huntsville, AL, 1974, pp. 121--132.
13.
K. Ito, K. Kunisch, and G. H. Peichl, Variational approach to shape derivatives, ESAIM Control Optim. Calc. Var., 14 (2008), pp. 517--539.
14.
T. Iwaniec, L. V. Kovalev, and J. Onninen, The Nitsche conjecture, J. Amer. Math. Soc., 24 (2011), pp. 345--373.
15.
T. Iwaniec and G. Martin, Geometric Function Theory and Non-linear Analysis, The Clarendon Press, Oxford University Press, 2001.
16.
G. K. Karpouzas, E. M. Papoutsis-Kiachagias, T. Schumacher, E. de Villiers, K. C. Gianna Koglon, and C. Othmer, Adjoint optimization for vehicle external aerodynamics, Int. J. Automot. Eng., 7 (2016), pp. 1--7.
17.
V. A. Kondrat'ev and O. A. Ole\uinik, Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities, Russian Math. Surveys, 43 (1988), pp. 65--119, https://doi.org/10.1070/RM1988v043n05ABEH001945.
18.
A. Laurain and K. Sturm, Distributed shape derivative via averaged adjoint method and applications, ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 1241--1267.
19.
B. Lévy, S. Petitjean, N. Ray, and J. Maillot, Least squares conformal maps for automatic texture atlas generation, ACM Trans. Graph., 21 (2002), pp. 362--371, https://doi.org/10.1145/566654.566590.
20.
B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids, Oxford University Press, Oxford, UK, 2010.
21.
F. Murat and J. Simon, Sur le contrôle par un domaine géométrique, Tech. report, 1976.
22.
O. Pironneau, On optimum design in fluid mechanics, J. Fluid Mech., 64 (1974), pp. 97--110.
23.
F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T. Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: Automating the finite element method by composing abstractions, ACM Trans. Math. Software, 43 (2017), no. 3, 24.
24.
D. Ridzal and D. P. Kouri, Rapid Optimization Library, Tech. report, Sandia National Laboratories (SNL-NM), Albuquerque, NM, 2014.
25.
S. Schmidt, Efficient Large Scale Aerodynamic Design Based on Shape Calculus, Ph.D. thesis, University of Trier, Trier, Germany, 2010, http://ubt.opus.hbz-nrw.de/frontdoor.php?source_opus=569&la=en.
26.
S. Schmidt, A Two Stage CVT/Eikonal Convection Mesh Deformation Approach for Large Nodal Deformations, preprint, https://arxiv.org/abs/1411.7663, 2014.
27.
S. Schmidt, V. Schulz, C. Ilic, and N. Gauger, Large scale aerodynamic shape optimization based on shape calculus, in ECCOMAS-CFD&Optimization, I. H. Tuncer, ed., 2011.
28.
F. Schottky, Ueber die conforme Abbildung mehrfach zusammenhängender ebener Flächen, J. Reine Angew. Math., 83 (1877), pp. 300--351.
29.
V. Schulz and M. Siebenborn, Computational comparison of surface metrics for PDE constrained shape optimization, Comput. Methods Appl. Math., 16 (2016), pp. 485--496.
30.
V. H. Schulz, A Riemannian view on shape optimization, Found. Comput. Math., 14 (2014), pp. 483--501.
31.
A. Segall and M. Ben-Chen, Iterative closest conformal maps between planar domains, in Proceedings of the Symposium on Geometry Processing, SGP '16, Eurographics Association, Goslar Germany, 2016, pp. 33--40, https://doi.org/10.1111/cgf.12961.
32.
R. E. Smith and L.-E. Eriksson, Algebraic grid generation, Comput. Methods Appl. Mech. Engrg., 64 (1987), pp. 285--300.
33.
J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer, Berlin, 1992.
34.
S. Steinberg, Fundamentals of Grid Generation, CRC Press, Boca Raton, FL, 1993.
35.
K. Sturm, Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption, SIAM J. Control Optim., 53 (2015), pp. 2017--2039, https://doi.org/10.1137/130930807.
36.
K. Sturm, Shape differentiability under non-linear PDE constraints, in New Trends in Shape Optimization, Internat. Ser. Numer. Math. 166, Birkhäuser/Springer, Cham, 2015, pp. 271--300.
37.
A. Vaxman, C. Müller, and O. Weber, Conformal mesh deformations with Möbius transformations, ACM Trans. Graph., 34 (2015), 55, https://doi.org/10.1145/2766915.
38.
A. Zochowski and P. Holnicki, Interactive method of variational grid generation, J. Comput. Appl. Math., 26 (1989), pp. 281--287.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A3807 - A3830
ISSN (online): 1095-7197

History

Submitted: 18 October 2017
Accepted: 4 September 2018
Published online: 20 November 2018

Keywords

  1. PDE constrained shape optimization
  2. grid deformation
  3. Cauchy--Riemann equations
  4. conformal mappings

MSC codes

  1. 49Q10
  2. 93B40
  3. 65D99
  4. 46E22

Authors

Affiliations

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/L015803/1, EP/K030930/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media