Abstract

This work is concerned with the proof of a posteriori error estimates for fully discrete Galerkin approximations of the Allen--Cahn equation in two and three spatial dimensions. The numerical method comprises the backward Euler method combined with conforming finite elements in space. For this method, we prove conditional type a posteriori error estimates in the $L^{}_4(0,T;L^{}_4(\Omega))$-norm that depend polynomially upon the inverse of the interface length $\epsilon$. The derivation relies crucially on the availability of a spectral estimate for the linearized Allen--Cahn operator about the approximating solution in conjunction with a continuation argument and a variant of the elliptic reconstruction. The new analysis also appears to improve variants of known a posteriori error bounds in $L_2(H^1)$, $L_\infty^{}(L_2^{})$-norms in certain regimes.

Keywords

  1. Allen--Cahn equation
  2. phase field
  3. discontinuous time-stepping scheme
  4. a posteriori error estimates
  5. conditional estimates

MSC codes

  1. 65M15
  2. 65M60

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Wiley, New York, 2000, https://doi.org/10.1002/9781118032824.
2.
N. Alikakos and G. Fusco, The spectrum of the Cahn\textendashHilliard operator for generic interface in higher space dimensions, Indiana Univ. Math. J., 42 (1993), pp. 637--674, https://doi.org/10.1512/iumj.1993.42.42028.
3.
S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), pp. 1085--1095, https://doi.org/10.1016/0001-6160(79)90196-2.
4.
T. Apel and J. M. Melenk, Interpolation and quasi-interpolation in h- and hp-version finite element spaces, in Encyclopedia of Computational Mechanics, E. Stein, R. de Borst, and T. J. R. Hughes, eds., 2nd ed., Vol. 1, Wiley, 2017, Chap. 3.
5.
S. Bartels, A posteriori error analysis for time-dependent Ginzburg\textendashLandau type equations, Numer. Math., 99 (2005), pp. 557--583, https://doi.org/10.1007/s00211-004-0560-7.
6.
S. Bartels, Numerical Approximation of Partial Differential Equations, Springer, Cham, Switzerland, 2016.
7.
S. Bartels and R. Müller, Quasi-optimal and robust a posteriori error estimates in ${L}^{\infty}_{}({L}^2_{})$ for the approximation of Allen\textendashCahn equations past singularities, Math. Comput., 80 (2011), pp. 761--780, https://doi.org/10.1090/s0025-5718-2010-02444-5.
8.
S. Bartels, R. Müller, and C. Ortner, Robust a priori and a posteriori error analysis for the approximation of Allen\textendashCahn and Ginzburg\textendashLandau equations past topological changes, SIAM J. Numer. Anal., 49 (2011), pp. 110--134, https://doi.org/10.1137/090751530.
9.
A. Cangiani, E. H. Georgoulis, and S. Metcalfe, Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems, IMA J. Numer. Anal., 34 (2013), pp. 1578--1597, https://doi.org/10.1093/imanum/drt052.
10.
A. Cangiani, E. H. Georgoulis, and O. J. Sutton, Adaptive Non-hierarchical Galerkin Methods for Parabolic Problems with Application to Moving Mesh and Virtual Element Methods, preprint, arXiv:2005.05661, 2020.
11.
X. Chen, Spectrum for the Allen\textendashCahn, Cahn\textendashHillard, and phase-field equations for generic interfaces, Comm. Partial Differential Equations, 19 (1994), pp. 1371--1395, https://doi.org/10.1080/03605309408821057.
12.
K. Chrysafinos, Stability analysis and best approximation error estimates of discontinuous time-stepping schemes for the Allen\textendashCahn equation, ESAIM Math. Model. Numer. Anal., 53 (2019), pp. 551--583, https://doi.org/10.1051/m2an/2018071.
13.
E. Dari, R. G. Durán, and C. Padra, Maximum norm error estimators for three-dimensional elliptic problems, SIAM J. Numer. Anal., 37 (2000), pp. 683--700.
14.
P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc., 347 (1995), pp. 1533--1589, https://doi.org/10.1090/s0002-9947-1995-1672406-7.
15.
A. Demlow and E. H. Georgoulis, Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 50 (2012), pp. 2159--2181, https://doi.org/10.1137/110846397.
16.
Q. Du and X. Feng, The phase field method for geometric moving interfaces and their numerical approximations, in Geometric Partial Differential Equations, Handb. Numer. Anal. 21, North-Holland, Amsterdam, 2020, pp. 425--508.
17.
X. Feng and H. jun Wu, A posteriori error estimates and an adaptive finite element method for the Allen\textendashCahn equation and the mean curvature flow, J. Sci. Comput., 24 (2005), pp. 121--146, https://doi.org/10.1007/s10915-004-4610-1.
18.
X. Feng and A. Prohl, Numerical analysis of the Allen\textendashCahn equation and approximation for mean curvature flows, Numer. Math., 94 (2003), pp. 33--65, https://doi.org/10.1007/s00211-002-0413-1.
19.
E. H. Georgoulis, O. Lakkis, and J. M. Virtanen, A posteriori error control for discontinuous Galerkin methods for parabolic problems, SIAM J. Numer. Anal., 49 (2011), pp. 427--458.
20.
E. H. Georgoulis, O. Lakkis, and T. P. Wihler, A Posteriori Error Bounds for Fully-Discrete hp-Discontinuous Galerkin Timestepping Methods for Parabolic Problems, preprint, http://arxiv.org/abs/1708.05832v1, 2017.
21.
E. H. Georgoulis and C. Makridakis, On a posteriori error control for the Allen--Cahn problem, Math. Methods Appl. Sci., 37 (2013), pp. 173--179, https://doi.org/10.1002/mma.2894.
22.
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics Appl. Math. 69, SIAM, Philadelphia, 2011, https://doi.org/10.1137/1.9781611972030.
23.
D. Kessler, R. H. Nochetto, and A. Schmidt, A posteriori error control for the Allen\textendashCahn problem: Circumventing Gronwall's inequality, ESAIM Math. Model. Numer. Anal., 38 (2004), pp. 129--142, https://doi.org/10.1051/m2an:2004006.
24.
O. Lakkis and C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp., 75 (2006), pp. 1627--1658.
25.
C. Makridakis and R. H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal., 41 (2003), pp. 1585--1594, https://doi.org/10.1137/S0036142902406314.
26.
C. Makridakis and R. H. Nochetto, A posteriori error analysis for higher order dissipative methods for evolution problems., Numer. Math., 104 (2006), pp. 489--514.
27.
R. H. Nochetto, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp., 64 (1995), pp. 1--22.
28.
R. H. Nochetto, G. Savaré, and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math., 53 (2000), pp. 525--589.
29.
L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483--483, https://doi.org/10.1090/s0025-5718-1990-1011446-7.
30.
R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester, England, 1996.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2662 - 2683
ISSN (online): 1095-7170

History

Submitted: 26 July 2019
Accepted: 6 July 2020
Published online: 23 September 2020

Keywords

  1. Allen--Cahn equation
  2. phase field
  3. discontinuous time-stepping scheme
  4. a posteriori error estimates
  5. conditional estimates

MSC codes

  1. 65M15
  2. 65M60

Authors

Affiliations

Konstantinos Chrysafinos
Emmanuil H. Georgoulis

Funding Information

Hellenic Foundation for Research and Innovation https://doi.org/10.13039/501100013209 : 3270

Funding Information

Hellenic Foundation for Research and Innovation https://doi.org/10.13039/501100013209 : 998

Funding Information

Leverhulme Trust https://doi.org/10.13039/501100000275 : RPG-2015-306

Funding Information

Stavros Niarchos Foundation https://doi.org/10.13039/501100004343 : ARCHERS

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media