Abstract

Søderberg electrodes feature prominently in the operation of metallurgical electrical furnaces. The electrode material must bake before entering the furnace; failure to bake will lower the efficiency of the process and may cause physical harm to the furnace itself through a soft breakage. As such, ensuring that the baking isotherm remains within the region of the electrode outside of the furnace is essential. We propose a mathematical model for a Søderberg electrode taking into account the heat, mass, and current transfer mechanisms at play, along with realistic boundary conditions on the outside of the electrode that are strongly heterogeneous in height. The resulting model describes a strongly heterogeneous cylindrical “thermistor" which moves slowly downward and is acted on by current clamps which provide Joule heating. Although it is often ignored in the literature on thermistor problems, we find that the Péclet number resulting from the downward motion strongly influences the position of the baking isotherm. Aside from some specific reductions leading to analytical solutions, the general form of the model is complicated enough to require numerical simulations. Still, our modeling approach provides us with a qualitative understanding of many aspects of the Søderberg electrode baking process and permits us to identify three parameters of key importance to the positioning of the baking isotherm. In particular, our results suggest desired ranges for the lowering rate of the electrode (in terms of a Péclet number), the radius of the electrode, and the strength of the Joule heating due to an applied current, which are the three aspects which may be controlled (to varying degrees) in industrial applications.

Keywords

  1. Søderberg electrode
  2. thermistor
  3. baking isotherm
  4. soft breakage

MSC codes

  1. 80A20
  2. 76W05
  3. 35Q79
  4. 35Q60

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Antontsev and M. Chipot, The thermistor problem: Existence, smoothness uniqueness, blowup, SIAM J. Math. Anal., 25 (1994), pp. 1128--1156.
2.
G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967.
3.
T. Bergstrøm, S. Cowley, A. C. Fowler, and P. E. Seward, Segregation of carbon paste in a smelting electrode, IMA J. Appl. Math., 43 (1989), pp. 83--99.
4.
A. Bermúdez, J. Bullón, and F. Pena, A finite element method for the thermoelectrical modelling of electrodes, Commun. Numer. Methods Eng., 14 (1998), pp. 581--593.
5.
J. Beukes, H. Roos, L. Shoko, P. Van Zyl, H. Neomagus, C. Strydom, and N. Dawson, The use of thermomechanical analysis to characterise Söderberg electrode paste raw materials, Miner. Eng., 46 (2013), pp. 167--176.
6.
J. J. Bezuidenhout, Computational Fluid Dynamic Modelling of an Electric Smelting Furnace in the Platinum Recovery Process, Ph.D. thesis, Stellenbosch University, 2008.
7.
C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox, Parallel scalable adjoint-based adaptive solution of variable-viscosity Stokes flow problems, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 1691--1700.
8.
X. Chen and A. Friedman, The thermistor problem for conductivity which vanishes at large temperature, Quart. Appl. Math., 51 (1993), pp. 101--115.
9.
G. Cimatti, A bound for the temperature in the thermistor problem, IMA J. Appl. Math., 40 (1988), pp. 15--22.
10.
G. Cimatti, Remark on existence and uniqueness for the thermistor problem under mixed boundary conditions, Quart. Appl. Math., 47 (1989), pp. 117--121.
11.
A. Fitt and J. Aitchison, Determining the effective viscosity of a carbon paste used for continuous electrode smelting, Fluid Dyn. Res., 11 (1993), pp. 37--59.
12.
A. Fitt and P. Howell, The manufacture of continuous smelting electrodes from carbon-paste briquettes, J. Engrg. Math., 33 (1998), pp. 353--376.
13.
A. Fowler, I. Frigaard, and S. Howison, Temperature surges in current-limiting circuit devices, SIAM J. Appl. Math., 52 (1992), pp. 998--1011.
14.
M. Gockenbach and K. Schmidtke, Newton's law of heating and the heat equation, Involve, 2 (2009), pp. 419--437.
15.
T. Hannesson, The Si Process Drawings, Elkem, Oslo, Norway, 2016.
16.
S. Hejazi and J. Azaiez, Stability of reactive interfaces in saturated porous media under gravity in the presence of transverse flows, J. Fluid Mech., 695 (2012), pp. 439--466.
17.
S. Hejazi, P. Trevelyan, J. Azaiez, and A. De Wit, Viscous fingering of a miscible reactive a + b $\rightarrow$ c interface: A linear stability analysis, J. Fluid Mech., 652 (2010), pp. 501--528.
18.
S. Howison, A note on the thermistor problem in two space dimensions, Quart. Appl. Math., 47 (1989), pp. 509--512.
19.
S. Howison, J. Rodrigues, and M. Shillor, Stationary solutions to the thermistor problem, J. Math. Anal. Appl., 174 (1993), pp. 573--588.
20.
R. Innvaer, The Søderberg electrode system. Recent research and development. New challenges, in International Ferro-Alloys Congress, New Orleans, LA, 1989, pp. 216--226.
21.
R. Innv\aer, K. Fidje, and T. Sira, 3-dimensional calculations on smelting electrodes, Model. Identification Control, 8 (1987), pp. 103--115.
22.
R. Innvaer, K. Fidje, and R. Ugland, Effect of current variations on material properties and thermal stresses in Söderberg electrodes, Proc. INFACON IV, Rio de Janeiro, Brazil, 1986, pp. 321--330.
23.
R. Innv\aer, A. Vatland, and L. Olsen, Operational parameters for Soderberg electrodes from calculations, measurements, and plant experience, in Mintek 50, Johannesburg 1984, 1985.
24.
K. Karalis, N. Karkalos, G. Antipas, and A. Xenidis, Pragmatic analysis of the electric submerged arc furnace continuum, R. Soc. Open Sci., 4 (2017), 170313.
25.
A. Lacey, Thermal runaway in a non-local problem modelling ohmic heating: Part i: Model derivation and some special cases, Eur. J. Appl. Math., 6 (1995), pp. 127--144.
26.
A. Lacey, Thermal runaway in a non-local problem modelling ohmic heating. Part ii: General proof of blow-up and asymptotics of runaway, Eur. J. Appl. Math., 6 (1995), pp. 201--224.
27.
A. Lacey, Thermo-electrical stability in an electrode, Math. Indust., (1998).
28.
L. Landau and E. Lifshitz, Course of Theoretical Physics. Vol. 6: Fluid Mechanics, Pergamon Press, New York, 1959.
29.
B. Larsen, J. P. M. Amaro, S. Z. Nascimento, K. Fidje, and H. Gran, Melting and densification of electrode paste briquettes in Søderberg electrodes, Elkem, (1998), pp. 1--10.
30.
B. Larsen, H. Feldborg, and S. Halvorsen, Minimizing thermal stress during shutdown of Soderberg electrodes, in Thirteenth International Ferroalloys Congress Efficient Technologies in Ferroalloy Industry, Almaty, Kazakhstan, 2013, pp. 453--467.
31.
H. Larsen, Current distribution in the electrodes of industrial three-phase electric smelting furnaces, in Proceedings of the 2006 Nordic COMSOL Conference, 2006.
32.
B. Li, B. Wang, and F. Tsukihashi, Modeling of electromagnetic field and liquid metal pool shape in an electroslag remelting process with two series-connected electrodes, Metall. Mater. Trans. B, 45 (2014), pp. 1122--1132.
33.
O. Manickam and G. Homsy, Simulation of viscous fingering in miscible displacements with nonmonotonic viscosity profiles, Phys. Fluids, 6 (1994), pp. 95--107.
34.
I. Mc Dougall, C. Smith, B. Olmstead, and W. Gericke, A finite element model of a søderberg electrode with an application in casing design, Proceedings of INFACON X, Cape Town, South Africa, 2004, pp. 575--583.
35.
R. Meyjes, J. Venter, and U. Van Rooyen, Advanced modelling and baking of electrodes, in Twelfth International Ferroalloys Congress: Sustainable Future, Helsinki, 2010, pp. 779--788.
36.
L. R. Nelson and F. X. Prins, Insights into the influences of paste additions and levels on Søderberg electrode management, in Tenth International Ferroalloys Congress, Vol. 1, Cape Town, South Africa, 2004, pp. 418--431.
37.
H. Plsson and M. R. Jnsson, Finite Element Analysis of Proximity Effects in Søderberg Electrodes, Technical report, University of Ireland, 2000.
38.
C. R. Ray, P. K. Sahoo, and S. S. Rao, Electrode management---Investigation into soft breaks at 48 MVa FeCr closed furnace, in Proceedings of the Eleventh Internatonal Ferroalloys Congress (INFACON), New Delhi, India, 2007, pp. 18--21.
39.
L. Roberts, E. Nordg\aard-Hansen, Ø. Mikkelsen, S. A. Halvorsen, and R. A. Van Gorder, A heat and mass transfer study of carbon paste baking, Int. Commun. Heat Mass. Transf., 88 (2017), pp. 9--19.
40.
Y. Sheng, G. Irons, and D. Tisdale, Transport phenomena in electric smelting of nickel matte: Part ii. Mathematical modeling, Metall. Mater. Trans. B, 29 (1998), pp. 85--94.
41.
L. Shoko, J. Beukes, and C. Strydom, Determining the baking isotherm temperature of söderberg electrodes and associated structural changes, Miner. Eng., 49 (2013), pp. 33--39.
42.
A. Skjeldestad, M. Tangstad, L. Lindstad, and B. Larsen, Temperature profiles in Søderberg electrodes, in Production Technologies and Operation, Kiev, 2015. The Fourteenth International Ferroalloys Congress, 2015, pp. 327--338.
43.
B. M. Sloman, C. P. Please, and R. A. Van Gorder, Asymptotic analysis of a silicon furnace model, SIAM J. Appl. Math., 78 (2018), pp. 1174--1205.
44.
B. M. Sloman, C. P. Please, and R. A. Van Gorder, Melting and dripping of a heated material with temperature-dependent viscosity in a thin vertical tube, J. Fluid Mech., 905 (2020), A16.
45.
B. M. Sloman, C. P. Please, R. A. Van Gorder, A. M. Valderhaug, R. G. Birkeland, and H. Wegge, A heat and mass transfer model of a silicon pilot furnace, Metall. Mater. Trans. B, 48 (2017), pp. 2664--2676.
46.
C. W. Söderberg, Electrode for Electric Furnaces and Process for Manufacturing the Same, https://patentimages.storage.googleapis.com/87/af/9c/f05dace9cc857a/US1440724.pdf, 1923.
47.
C. Tan and G. Homsy, Stability of miscible displacements in porous media: Rectilinear flow, Phys. Fluids, 29 (1986), pp. 3549--3556.
48.
K. Torklep, Viscometry in Paste Production, Light Metals 1988, 1988, pp. 237--244.
49.
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1995.
50.
J. Xia and T. Ahokainen, Numerical modelling of slag flows in an electric furnace, Scand. J. Metall., 33 (2004), pp. 220--228.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 1691 - 1716
ISSN (online): 1095-712X

History

Submitted: 21 January 2020
Accepted: 5 May 2021
Published online: 20 August 2021

Keywords

  1. Søderberg electrode
  2. thermistor
  3. baking isotherm
  4. soft breakage

MSC codes

  1. 80A20
  2. 76W05
  3. 35Q79
  4. 35Q60

Authors

Affiliations

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/L015803/1

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.