Abstract

Localized collocation methods based on radial basis functions (RBFs) for elliptic problems appear to be nonrobust in the presence of Neumann boundary conditions. In this paper, we overcome this issue by formulating the RBF-generated finite difference method in a discrete least squares setting instead. This allows us to prove high-order convergence under node refinement and to numerically verify that the least squares formulation is more accurate and robust than the collocation formulation. The implementation effort for the modified algorithm is comparable to that for the collocation method.

Keywords

  1. radial basis function
  2. least squares
  3. partial differential equation
  4. elliptic problem
  5. Neumann condition
  6. RBF-FD

MSC codes

  1. 65N06
  2. 65N12
  3. 65N35

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
C. Aistleitner, F. Pausinger, A. M. Svane, and R. F. Tichy, On functions of bounded variation, Math. Proc. Cambridge Philos. Soc., 162 (2017), pp. 405--418, https://doi.org/10.1017/S0305004116000633.
2.
G. A. Barnett, A Robust RBF-FD Formulation based on Polyharmonic Splines and Polynomials, Ph.D. thesis, Department of Applied Mathematics, University of Colorado at Boulder, Boulder, 2015.
3.
V. Bayona, An insight into RBF-FD approximations augmented with polynomials, Comput. Math. Appl., 77 (2019), pp. 2337--2353, https://doi.org//10.1016/j.camwa.2018.12.029.
4.
V. Bayona, N. Flyer, and B. Fornberg, On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries, J. Comput. Phys., 380 (2019), pp. 378--399, https://doi.org/10.1016/j.jcp.2018.12.013.
5.
V. Bayona, N. Flyer, B. Fornberg, and G. A. Barnett, On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs, J. Comput. Phys., 332 (2017), pp. 257--273, https://doi.org/10.1016/j.jcp.2016.12.008.
6.
A. Boulkhemair and A. Chakib, On the uniform Poincaré inequality, Comm. Partial Differential Equations, 32 (2007), pp. 1439--1447, https://doi.org/10.1080/03605300600910241.
7.
L. Brandolini, L. Colzani, G. Gigante, and G. Travaglini, A Koksma-Hlawka inequality for simplices, in Trends in Harmonic Analysis, Springer INdAM Ser. 3, Springer, New York, 2013, pp. 33--46, https://doi.org/10.1007/978-88-470-2853-1_3.
8.
L. Brandolini, L. Colzani, G. Gigante, and G. Travaglini, On the Koksma-Hlawka inequality, J. Complexity, 29 (2013), pp. 158--172, https://doi.org/10.1016/j.jco.2012.10.003.
9.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts in Appl. Math. 15, Springer, New York, 2008, https://doi.org/10.1007/978-0-387-75934-0.
10.
O. Davydov, Error Bounds for a Least Squares Meshless Finite Difference Method on Closed Manifolds, https://arxiv.org/abs/1910.03359, 2019.
11.
N. Flyer, G. A. Barnett, and L. J. Wicker, Enhancing finite differences with radial basis functions: experiments on the Navier-Stokes equations, J. Comput. Phys., 316 (2016), pp. 39--62, https://doi.org/10.1016/j.jcp.2016.02.078.
12.
N. Flyer, B. Fornberg, V. Bayona, and G. A. Barnett, On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy, J. Comput. Phys., 321 (2016), pp. 21--38, https://doi.org/10.1016/j.jcp.2016.05.026.
13.
B. Fornberg and N. Flyer, Fast generation of 2-D node distributions for mesh-free PDE discretizations, Comput. Math. Appl., 69 (2015), pp. 531--544, https://doi.org/10.1016/j.camwa.2015.01.009.
14.
B. Fornberg, N. Flyer, and J. M. Russell, Comparisons between pseudospectral and radial basis function derivative approximations, IMA J. Numer. Anal., 30 (2010), pp. 149--172, https://doi.org/10.1093/imanum/drn064.
15.
E. Larsson, V. Shcherbakov, and A. Heryudono, A least squares radial basis function partition of unity method for solving PDEs, SIAM J. Sci. Comput., 39 (2017), pp. A2538--A2563, https://doi.org/10.1137/17M1118087.
16.
S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods, Texts Appl. Math. 45, Springer-Verlag, Berlin, 2003.
17.
G. R. Liu, B. B. T. Kee, and L. Chun, A stabilized least-squares radial point collocation method (LS-RPCM) for adaptive analysis, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 4843--4861, https://doi.org/10.1016/j.cma.2005.11.015.
18.
C. A. Micchelli, Interpolation of scattered data: Distance matrices and conditionally positive definite functions, Constr. Approx., 2 (1986), pp. 11--22, https://doi.org/10.1007/BF01893414.
19.
S. Milovanović and L. von Sydow, A high order method for pricing of financial derivatives using radial basis function generated finite differences, Math. Comput. Simulation, 174 (2020), pp. 205--217, https://doi.org/10.1016/j.matcom.2020.02.005.
20.
D. Mirzaei, The direct radial basis function partition of unity (D-RBF-PU) method for solving PDEs, SIAM J. Sci. Comput., 43 (2021), pp. A54--A83, https://doi.org/10.1137/19M128911X.
21.
P.-O. Persson and G. Strang, A simple mesh generator in Matlab, SIAM Rev., 46 (2004), pp. 329--345, https://doi.org/10.1137/S0036144503429121.
22.
A. Petras, L. Ling, C. Piret, and S. J. Ruuth, A least-squares implicit RBF-FD closest point method and applications to PDEs on moving surfaces, J. Comput. Phys., 381 (2019), pp. 146--161, https://doi.org/10.1016/j.jcp.2018.12.031.
23.
R. B. Platte and T. A. Driscoll, Eigenvalue stability of radial basis function discretizations for time-dependent problems, Comput. Math. Appl., 51 (2006), pp. 1251--1268, https://doi.org/10.1016/j.camwa.2006.04.007.
24.
R. Schaback, All well-posed problems have uniformly stable and convergent discretizations, Numer. Math., 132 (2016), pp. 597--630, https://doi.org/10.1007/s00211-015-0731-8.
25.
I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. (2), 39 (1938), pp. 811--841, https://doi.org/10.2307/1968466.
26.
V. Shankar, The overlapped radial basis function-finite difference (RBF-FD) method: A generalization of RBF-FD, J. Comput. Phys., 342 (2017), pp. 211--228, https://doi.org/10.1016/j.jcp.2017.04.037.
27.
V. Shankar, R. M. Kirby, and A. L. Fogelson, Robust node generation for mesh-free discretizations on irregular domains and surfaces, SIAM J. Sci. Comput., 40 (2018), pp. A2584--A2608, https://doi.org/10.1137/17M114090X.
28.
C. Shu, H. Ding, and K. Yeo, Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier--Stokes equations, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 941--954, https://doi.org/10.1016/S0045-7825(02)00618-7.
29.
J. Slak and G. Kosec, On generation of node distributions for meshless PDE discretizations, SIAM J. Sci. Comput., 41 (2019), pp. A3202--A3229, https://doi.org/10.1137/18M1231456.
30.
A. I. Tolstykh, On using RBF-based differencing formulas for unstructured and mixed structured-unstructured grid calculations, in Proceedings of the 16th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation, Lausanne, Switzerland, 2002.
31.
I. Tominec, Rectangular and Square RBF-FD Matrices in MATLAB, https://github.com/IgorTo/rbf-fd, 2021, https://doi.org/10.5281/zenodo.4525551.
32.
K. van der Sande and B. Fornberg, Fast Variable Density 3-D Node Generation, SIAM J. Sci. Comput., 43 (2021), pp. A242--A257, https://doi.org/10.1137/20M1337016.
33.
H. Wendland, Fast evaluation of radial basis functions: Methods based on partition of unity, in Approximation Theory, X (St. Louis, MO, 2001), Innov. Appl. Math., Vanderbilt University Press, Nashville, TN, 2002, pp. 473--483.
34.
H. Wendland, Scattered Data Approximation, Cambridge Monogr. Appl. Comput. Math. 17, Cambridge University Press, Cambridge, UK, 2005.
35.
G. B. Wright and B. Fornberg, Scattered node compact finite difference-type formulas generated from radial basis functions, J. Comput. Phys., 212 (2006), pp. 99--123, https://doi.org/10.1016/j.jcp.2005.05.030.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A1441 - A1471
ISSN (online): 1095-7197

History

Submitted: 6 March 2020
Accepted: 8 February 2021
Published online: 26 April 2021

Keywords

  1. radial basis function
  2. least squares
  3. partial differential equation
  4. elliptic problem
  5. Neumann condition
  6. RBF-FD

MSC codes

  1. 65N06
  2. 65N12
  3. 65N35

Authors

Affiliations

Funding Information

National Science Foundation https://doi.org/10.13039/100000001 : DMS-2012011
Svenska Forskningsrådet Formas https://doi.org/10.13039/501100001862 : 2016-04849

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.