Computational Methods in Science and Engineering

Efficient Numerical Methods for Computing the Stationary States of Phase Field Crystal Models

Abstract

Finding the stationary states of a free energy functional is an important problem in phase field crystal (PFC) models. Many efforts have been devoted to designing numerical schemes with energy dissipation and mass conservation properties. However, most existing approaches are time-consuming due to the requirement of small effective step sizes. In this paper, we discretize the energy functional and propose efficient numerical algorithms for solving the constrained nonconvex minimization problem. A class of gradient-based approaches, which are the so-called adaptive accelerated Bregman proximal gradient (AA-BPG) methods, is proposed, and the convergence property is established without the global Lipschitz constant requirements. A practical Newton method is also designed to further accelerate the local convergence with convergence guarantee. One key feature of our algorithms is that the energy dissipation and mass conservation properties hold during the iteration process. Moreover, we develop a hybrid acceleration framework to accelerate the AA-BPG methods and most of the existing approaches through coupling with the practical Newton method. Extensive numerical experiments, including two three-dimensional periodic crystals in the Landau--Brazovskii (LB) model and a two-dimensional quasicrystal in the Lifshitz--Petrich (LP) model, demonstrate that our approaches have adaptive step sizes which lead to a significant acceleration over many existing methods when computing complex structures.

Keywords

  1. phase field crystal models
  2. stationary states
  3. adaptive accelerated Bregman proximal gradient methods
  4. preconditioned conjugate gradient method
  5. hybrid acceleration framework

MSC codes

  1. 35J60
  2. 35Q74
  3. 65N35

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), pp. 141--148.
2.
H. H. Bauschke, J. Bolte, and M. Teboulle, A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications, Math. Oper. Res., 42 (2017), pp. 330--348.
3.
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), pp. 183--202, https://doi.org/10.1137/080716542.
4.
J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math. Program., 146 (2014), pp. 459--494.
5.
J. Bolte, S. Sabach, M. Teboulle, and Y. Vaisbourd, First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problems, SIAM J. Optim., 28 (2018), pp. 2131--2151, https://doi.org/10.1137/17M1138558.
6.
S. Brazovskii, Phase transition of an isotropic system to a nonuniform state, J. Exp. Theor. Phys., 41 (1975), pp. 85--89.
7.
L. M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys., 7 (1967), pp. 200--217.
8.
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
9.
L. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32 (2002), pp. 113--140.
10.
L. Q. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Commun., 108 (1998), pp. 147--158.
11.
K. Cheng, C. Wang, and S. M. Wise, An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation, Commun. Comput. Phys., 26 (2019), pp. 1335--1364.
12.
Q. Du and J. Zhang, Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations, SIAM J. Sci. Comput., 30 (2008), pp. 1634--1657, https://doi.org/10.1137/060656449.
13.
Q. Du and W.-x. Zhu, Stability analysis and application of the exponential time differencing schemes, J. Comput. Math., 22 (2004), pp. 200--209.
14.
X. Feng, Y. He, and C. Liu, Analysis of finite element approximations of a phase field model for two-phase fluids, Math. Comp., 76 (2007), pp. 539--571.
15.
R. Guo and Y. Xu, A high order adaptive time-stepping strategy and local discontinuous Galerkin method for the modified phase field crystal equation, Commun. Comput. Phys., 24 (2018), pp. 123--151.
16.
H. Hiller, The crystallographic restriction in higher dimensions, Acta Crystallogr. Sect. A, 41 (1985), pp. 541--544.
17.
Z. Hu, S. M. Wise, C. Wang, and J. S. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J. Comput. Phys., 228 (2009), pp. 5323--5339.
18.
K. Jiang, J. Tong, P. Zhang, and A.-C. Shi, Stability of two-dimensional soft quasicrystals in systems with two length scales, Phys. Rev. E (3), 92 (2015), 042159.
19.
K. Jiang, C. Wang, Y. Huang, and P. Zhang, Discovery of new metastable patterns in diblock copolymers, Commun. Comput. Phys., 14 (2013), pp. 443--460.
20.
K. Jiang and P. Zhang, Numerical methods for quasicrystals, J. Comput. Phys., 256 (2014), pp. 428--440.
21.
Y. Katznelson, An Introduction to Harmonic Analysis, Cambridge University Press, Cambridge, UK, 2004.
22.
H. G. Lee, J. Shin, and J.-Y. Lee, First- and second-order energy stable methods for the modified phase field crystal equation, Comput. Methods Appl. Mech. Engrg., 321 (2017), pp. 1--17.
23.
S. Lee, M. Bluemle, and F. Bates, Discovery of a Frank-Kasper $\sigma$ phase in sphere-forming block copolymer melts, Science, 330 (2010), pp. 349--353.
24.
Q. Li, Z. Zhu, G. Tang, and M. B. Wakin, Provable Bregman-Divergence Based Methods for Nonconvex and Non-Lipschitz Problems, preprint, https://arxiv.org/abs/1904.09712, 2019.
25.
R. Lifshitz and H. Diamant, Soft quasicrystals---why are they stable?, Philos. Mag., 87 (2007), pp. 3021--3030.
26.
R. Lifshitz and D. Petrich, Theoretical model for Faraday waves with multiple-frequency forcing, Phys. Rev. Lett., 79 (1997), pp. 1261--1264.
27.
X. Liu, Z. Wen, X. Wang, M. Ulbrich, and Y. Yuan, On the analysis of the discretized Kohn--Sham density functional theory, SIAM J. Numer. Anal., 53 (2015), pp. 1758--1785, https://doi.org/10.1137/140957962.
28.
S. K. Mkhonta, K. R. Elder, and Z.-F. Huang, Exploring the complex world of two-dimensional ordering with three modes, Phys. Rev. Lett., 111 (2013), 035501, https://doi.org/10.1103/PhysRevLett.111.035501.
29.
J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 2006.
30.
B. O'donoghue and E. Candes, Adaptive restart for accelerated gradient schemes, Found. Comput. Math., 15 (2015), pp. 715--732.
31.
N. Provatas and K. Elder, Phase-Field Methods in Materials Science and Engineering, Wiley-VCH, Weinheim, Germany, 2010.
32.
J. Shen, J. Xu, and J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Rev., 61 (2019), pp. 474--506, https://doi.org/10.1137/17M1150153.
33.
J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28 (2010), pp. 1669--1691.
34.
A.-C. Shi, J. Noolandi, and R. C. Desai, Theory of anisotropic fluctuations in ordered block copolymer phases, Macromolecules, 29 (1996), pp. 6487--6504.
35.
J. Shin, H. G. Lee, and J.-Y. Lee, First and second order numerical methods based on a new convex splitting for phase-field crystal equation, J. Comput. Phys., 327 (2016), pp. 519--542.
36.
J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15 (1977), pp. 319--328, https://doi.org/10.1103/PhysRevA.15.319.
37.
P. Tseng, On Accelerated Proximal Gradient Methods for Convex-Concave Optimization, manuscript, 2008.
38.
M. Ulbrich, Z. Wen, C. Yang, D. Klöckner, and Z. Lu, A proximal gradient method for ensemble density functional theory, SIAM J. Sci. Comput., 37 (2015), pp. A1975--A2002, https://doi.org/10.1137/14098973X.
39.
J. Van Tiel, Convex Analysis: An Introductory Text, manuscript, 1984.
40.
C. Wang and S. M. Wise, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 49 (2011), pp. 945--969, https://doi.org/10.1137/090752675.
41.
S. M. Wise, C. Wang, and J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47 (2009), pp. 2269--2288, https://doi.org/10.1137/080738143.
42.
X. Wu, Z. Wen, and W. Bao, A regularized Newton method for computing ground states of Bose-Eeinstein condensates, J. Sci. Comput., 73 (2017), pp. 303--329.
43.
X. Xiao, Y. Li, Z. Wen, and L. Zhang, A regularized semi-smooth Newton method with projection steps for composite convex programs, J. Sci. Comput., 76 (2018), pp. 364--389.
44.
N. Xie, W. Li, F. Qiu, and A.-C. Shi, $\sigma$ phase formed in conformationally asymmetric AB-type block copolymers, ACS Macro Lett., 3 (2014), pp. 906--910.
45.
C. Xu and T. Tang, Stability analysis of large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal., 44 (2006), pp. 1759--1779, https://doi.org/10.1137/050628143.
46.
X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, J. Comput. Phys., 327 (2016), pp. 294--316.
47.
X.-Y. Zhao, D. Sun, and K.-C. Toh, A Newton-CG augmented Lagrangian method for semidefinite programming, SIAM J. Optim., 20 (2010), pp. 1737--1765, https://doi.org/10.1137/080718206.

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: B1350 - B1377
ISSN (online): 1095-7197

History

Submitted: 24 February 2020
Accepted: 7 August 2020
Published online: 9 November 2020

Keywords

  1. phase field crystal models
  2. stationary states
  3. adaptive accelerated Bregman proximal gradient methods
  4. preconditioned conjugate gradient method
  5. hybrid acceleration framework

MSC codes

  1. 35J60
  2. 35Q74
  3. 65N35

Authors

Affiliations

Funding Information

Hunan Science Foundation of China : 2018JJ2376
Chinese Academy of Sciences Key Project https://doi.org/10.13039/501100005151 : 19A500
Education Department of Hunan Province https://doi.org/10.13039/100009377
National Social Science Fund Youth Project https://doi.org/10.13039/501100012294 : 18B057
National Natural Science Foundation of China https://doi.org/10.13039/501100001809 : 11771368, 11901338

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.