Abstract

This paper presents a novel mathematical framework for understanding pixel-driven approaches for the parallel beam Radon transform as well as for the fanbeam transform, showing that with the correct discretization strategy, convergence---including rates---in the $L^2$ operator norm can be obtained. From these rates, suitable strategies are devised for discretization of the occurring domains/variables and are first established for the Radon transform. In particular, discretizing the detector in the same magnitude as the image pixels (which is standard practice) might not be ideal and, in fact, pixels that are asymptotically smaller than detectors lead to convergence. Possible adjustments to limited-angle and sparse-angle Radon transforms are discussed, and similar convergence results are shown. In the same vein, convergence results are readily extended to a novel pixel-driven approach to the fanbeam transform. Numerical aspects of the discretization scheme are discussed, and it is shown in particular that with the correct discretization strategy, the typical high-frequency artifacts can be avoided.

Keywords

  1. Radon transform
  2. fanbeam transform
  3. computed tomography
  4. convergence analysis
  5. discretization schemes
  6. pixel-driven projection and backprojection

MSC codes

  1. 44A12
  2. 65R10
  3. 94A08
  4. 41A25

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, Springer, 2008.
2.
A. H. Andersen and A. C. Kak, Simultaneous Algebraic Reconstruction Technique (SART): A superior implementation of the ART algorithm, Ultrasonic Imaging, 6 (1984), pp. 81--94.
3.
A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, Y. Shkolnisky, and I. Sedelnikov, A framework for discrete integral transformations II---The 2D discrete Radon transform, SIAM J. Sci. Comput., 30 (2008), pp. 785--803, https://doi.org/10.1137/060650301.
4.
A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, and J. Waldén, Fast Slant Stack: A Notion of Radon Transform for Data in a Cartesian Grid Which Is Rapidly Computable, Algebraically Exact, Geometrically Faithful and Invertible, http://www.cs.tau.ac.il/~amir1/PS/FastRadon042001.pdf, 2001, accessed 04/02/2020.
5.
G. Beylkin, Discrete Radon transform, IEEE Trans. Acoust. Speech Signal Process., 35 (1987), pp. 162--172, https://doi.org/10.1109/TASSP.1987.1165108.
6.
F. Bleichrodt, T. van Leeuwen, W. Palenstijn, W. Aarle, J. Sijbers, and K. Batenburg, Easy implementation of advanced tomography algorithms using the ASTRA toolbox with Spot operators, Numer. Algorithms, 71 (2016), pp. 673--697, https://doi.org/10.1007/s11075-015-0016-4.
7.
M. L. Brady, A fast discrete approximation algorithm for the Radon transform, SIAM J. Comput., 27 (1998), pp. 107--119, https://doi.org/10.1137/S0097539793256673.
8.
E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ, 1974.
9.
A. Cameron, A. Schwope, and S. Vrielmann, Astrotomography, Astron. Nachr., 325 (2004), pp. 179--180, https://doi.org/10.1002/asna.200310234.
10.
J.-L. Chen, L. Li, L.-Y. Wang, A.-L. Cai, X.-Q. Xi, H.-M. Zhang, J.-X. Li, and B. Yan, Fast parallel algorithm for three-dimensional distance-driven model in iterative computed tomography reconstruction, Chinese Phys. B, 24 (2015), 028703, https://doi.org/10.1088/1674-1056/24/2/028703.
11.
B. De Man and S. Basu, Distance-driven projection and backprojection, in 2002 IEEE Nuclear Science Symposium Conference Record, Vol. 3, IEEE, 2002, pp. 1477--1480, https://doi.org/10.1109/NSSMIC.2002.1239600.
12.
S. R. Deans, The Radon Transform and Some of Its Applications, Krieger, 1993.
13.
B. Dong, J. Li, and Z. Shen, X-ray CT image reconstruction via wavelet frame based regularization and Radon domain inpainting, J. Sci. Comput., 54 (2013), pp. 333--349, https://doi.org/10.1007/s10915-012-9579-6.
14.
D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289--1306, https://doi.org/10.1109/TIT.2006.871582.
15.
P. Dreike and D. P. Boyd, Convolution reconstruction of fan beam projections, Comput. Graph. Image Process., 5 (1976), pp. 459--469, https://doi.org/10.1016/S0146-664X(76)80032-9.
16.
Y. Du, G. Yu, X. Xiang, and X. Wang, GPU accelerated voxel-driven forward projection for iterative reconstruction of cone-beam CT, Biomed. Eng. Online, 16 (2017), 2, https://doi.org/10.1186/s12938-016-0293-8.
17.
G. Folland, Real Analysis: Modern Techniques and Their Applications, Pure Appl. Math., Wiley, 1984.
18.
H. Gao, Fast parallel algorithms for the x-ray transform and its adjoint, Med. Phys., 39 (2012), pp. 7110--7120, https://doi.org/10.1118/1.4761867.
19.
P. Gilbert, Iterative methods for the three-dimensional reconstruction of an object from projections, J. Theoret. Biol., 36 (1972), pp. 105--117.
20.
R. Gordon, R. Bender, and G. T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography, J. Theoret. Biol., 29 (1970), pp. 471--481, https://doi.org/10.1016/0022-5193(70)90109-8.
21.
S. Ha, H. Li, and W. K. Mueller, Efficient area-based ray integration using summed area tables and regression models, in The 4th International Conference on Image Formation in X-Ray Computed Tomography, Society of High Performance Computational Imaging (SHPCI) e.V., 2016, pp. 507--510.
22.
S. Ha and K. Mueller, A look-up table-based ray integration framework for 2-D/3-D forward and back projection in X-ray CT, IEEE Trans. Med. Imaging, 37 (2018), pp. 361--371, https://doi.org/10.1109/TMI.2017.2741781.
23.
U. Hämarik, B. Kaltenbacher, U. Kangro, and E. Resmerita, Regularization by discretization in Banach spaces, Inverse Problems, 32 (2016), 035004, https://doi.org/10.1088/0266-5611/32/3/035004.
24.
G. Herman, A. Lakshminarayanan, and A. Naparstek, Convolution reconstruction techniques for divergent beams, Comput. Biol. Med., 6 (1976), pp. 259--271, https://doi.org/10.1016/0010-4825(76)90065-2.
25.
S. Horbelt, M. Liebling, and M. Unser, Discretization of the Radon transform and of its inverse by spline convolutions, IEEE Trans. Med. Imaging, 21 (2002), pp. 363--376, https://doi.org/10.1109/TMI.2002.1000260.
26.
J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances, SPIE---The International Society for Optical Engineering, Bellingham, WA, 2009.
27.
R. Huber, G. Haberfehlner, M. Holler, G. Kothleitner, and K. Bredies, Total generalized variation regularization for multi-modal electron tomography, Nanoscale, 11 (2019), pp. 5617--5632, https://doi.org/10.1039/C8NR09058K.
28.
X. Jia, Y. Lou, R. Li, W. Y. Song, and S. B. Jiang, GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation, Med. Phys., 37 (2010), pp. 1757--1760, https://doi.org/10.1118/1.3371691.
29.
E. L. Johnson, H. Wang, J. W. McCormick, K. L. Greer, R. E. Coleman, and R. J. Jaszczak, Pixel driven implementation of filtered backprojection for reconstruction of fan beam SPECT data using a position dependent effective projection bin length, Phys. Med. Biol., 41 (1996), pp. 1439--1452, https://doi.org/10.1088/0031-9155/41/8/012.
30.
P. M. Joseph, An improved algorithm for reprojecting rays through pixel images, IEEE Trans. Med. Imaging, 1 (1982), pp. 192--196.
31.
B. T. Kelley and V. Madisetti, The fast discrete Radon transform. I. Theory, IEEE Trans. Image Process., 2 (1993), pp. 382--400, https://doi.org/10.1109/83.236530.
32.
A. Kingston, Orthogonal discrete Radon transform over $p^n\times p^n$ images, Signal Process., 86 (2006), pp. 2040--2050, https://doi.org/10.1016/j.sigpro.2005.09.024.
33.
L. Landweber, An iteration formula for Fredholm integral equations of the first kind, Amer. J. Math., 73 (1951), pp. 615--624.
34.
S. J. LaRoque, E. Y. Sidky, and X. Pan, Accurate image reconstruction from few-view and limited-angle data in diffraction tomography, J. Opt. Soc. Amer. A, 25 (2008), pp. 1772--1782, https://doi.org/10.1364/JOSAA.25.001772.
35.
R. K. Leary and P. A. Midgley, Analytical electron tomography, MRS Bull., 41 (2016), pp. 531--536, https://doi.org/10.1557/mrs.2016.132.
36.
R. Liu, L. Fu, B. De Man, and H. Yu, GPU-based branchless distance-driven projection and backprojection, IEEE Trans. Comput. Imaging, 3 (2017), pp. 617--632, https://doi.org/10.1109/TCI.2017.2675705.
37.
J. Mairal, F. Bach, and J. Ponce, Sparse modeling for image and vision processing, Found. Trends. Comput. Graph. Vis., 8 (2014), pp. 85--283, https://doi.org/10.1561/0600000058.
38.
B. D. Man and S. Basu, Distance-driven projection and backprojection in three dimensions, Phys. Med. Biol., 49 (2004), pp. 2463--2475, https://doi.org/10.1088/0031-9155/49/11/024.
39.
A. Markoe, Analytic Tomography, Encyclopedia Math. Appl., Cambridge University Press, 2006, https://doi.org/10.1017/CBO9780511530012.
40.
F. Natterer, Regularisierung schlecht gestellter Probleme durch Projektionsverfahren, Numer. Math., 28 (1977), pp. 329--341, https://doi.org/10.1007/BF01389972.
41.
F. Natterer, The Mathematics of Computerized Tomography, SIAM, Philadelphia, 2001, https://doi.org/10.1137/1.9780898719284.
42.
W. J. Palenstijn, J. Bédorf, J. Sijbers, and K. J. Batenburg, A distributed ASTRA toolbox, Adv. Struct. Chem. Imaging, 2 (2016), 19, https://doi.org/10.1186/s40679-016-0032-z.
43.
T. M. Peters, Algorithms for fast back- and re-projection in computed tomography, IEEE Trans. Nuclear Sci., 28 (1981), pp. 3641--3647, https://doi.org/10.1109/TNS.1981.4331812.
44.
Z. Qiao, G. Redler, Z. Gui, Y. Qian, B. Epel, and H. Halpern, Three novel accurate pixel-driven projection methods for 2D CT and 3D EPR imaging, J. X-ray Sci. Technol., 26 (2017), pp. 83--102.
45.
J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. K. Sächs. Ges. Wiss. Leipz., Math.-Phys. Kl., 69 (1917), pp. 262--277.
46.
N. Rawlinson, S. Pozgay, and S. Fishwick, Seismic tomography: A window into deep earth, Phys. Earth Planet. Int., 178 (2010), pp. 101--135, https://doi.org/10.1016/j.pepi.2009.10.002.
47.
O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen, Variational Methods in Imaging, Springer, 2008.
48.
L. A. Shepp and B. F. Logan, The Fourier reconstruction of a head section, IEEE Trans. Nuclear Sci., 21 (1974), pp. 21--43, https://doi.org/10.1109/TNS.1974.6499235.
49.
R. L. Siddon, Fast calculation of the exact radiological path for a three-dimensional CT array, Med. Phys., 12 (1985), pp. 252--255.
50.
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
51.
E. Sundermann, F. Jacobs, M. Christiaens, B. De Sutter, and I. Lemahieu, A fast algorithm to calculate the exact radiological path through a pixel or voxel space, J. Comput. Inf. Technol., 6 (1998), pp. 89--94.
52.
C. Syben, M. Michen, B. Stimpel, S. Seitz, S. Ploner, and A. K. Maier, PYRO-NN: Python reconstruction operators in neural networks, Med. Phys., 46 (2019), pp. 5110--5115, https://doi.org/10.1002/mp.13753.
53.
W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, Fast and flexible X-ray tomography using the ASTRA toolbox, Opt. Express, 24 (2016), pp. 25129--25147, https://doi.org/10.1364/OE.24.025129.
54.
M. N. Wernick and J. N. Aarsvold, Emission Tomography: The Fundamentals of PET and SPECT, Academic Press, San Diego, 2004, https://doi.org/10.1016/B978-0-12-744482-6.50030-2.
55.
L. Xie, Y. Hu, B. Yan, L. Wang, B. Yang, W. Liu, L. Zhang, L. Luo, H. Shu, and Y. Chen, An effective CUDA parallelization of projection in iterative tomography reconstruction, PloS One, 10 (2015), e0142184, https://doi.org/10.1371/journal.pone.0142184.
56.
G. Zeng and G. Gullberg, A backprojection filtering algorithm for a spatially varying focal length collimator, IEEE Trans. Med. Imaging, 13 (1994), pp. 549--556, https://doi.org/10.1109/42.310886.
57.
G. L. Zeng and G. T. Gullberg, A ray-driven backprojector for backprojection filtering and filtered backprojection algorithms, in 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, IEEE, 1993, pp. 1199--1201, https://doi.org/10.1109/NSSMIC.1993.701833.
58.
G. L. Zeng and G. T. Gullberg, Unmatched projector/backprojector pairs in an iterative reconstruction algorithm, IEEE Trans. Med. Imaging, 19 (2000), pp. 548--555, https://doi.org/10.1109/42.870265.
59.
W. Zhuang, S. S. Gopal, and T. J. Hebert, Numerical evaluation of methods for computing tomographic projections, IEEE Trans. Nuclear Sci., 41 (1994), pp. 1660--1665, https://doi.org/10.1109/23.322963.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1399 - 1432
ISSN (online): 1095-7170

History

Submitted: 6 April 2020
Accepted: 19 February 2021
Published online: 25 May 2021

Keywords

  1. Radon transform
  2. fanbeam transform
  3. computed tomography
  4. convergence analysis
  5. discretization schemes
  6. pixel-driven projection and backprojection

MSC codes

  1. 44A12
  2. 65R10
  3. 94A08
  4. 41A25

Authors

Affiliations

Funding Information

Austrian Science Fund https://doi.org/10.13039/501100002428 : W1244
Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media