Abstract

We present the discovery of a novel and intriguing global geometric structure of the (interior) transmission eigenfunctions associated with the Helmholtz system. It is shown in generic scenarios that there always exists a sequence of transmission eigenfunctions with the corresponding eigenvalues going to infinity such that those eigenfunctions are localized around the boundary of the domain. We provide a comprehensive and rigorous justification in the case within the radial geometry, whereas for the nonradial case, we conduct extensive numerical experiments to quantitatively verify the localizing behaviors. The discovery provides a new perspective on wave localization. As significant applications, we develop a novel inverse scattering scheme that can produce super-resolution imaging effects and propose a method of generating the so-called pseudo surface plasmon resonant (PSPR) modes with a potential sensing application.

Keywords

  1. transmission eigenfunctions
  2. wave localization
  3. super-resolution imaging
  4. surface plasmon resonance
  5. sensing

MSC codes

  1. 35P25
  2. 58J50
  3. 35R30
  4. 78A40

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, 1965.
2.
H. Ammari, Y. Chow, and J. Zou, Super-resolution in imaging high contrast targets from the perspective of scattering coefficients, J. Math. Pures Appl. (9), 111 (2018), pp. 191--226.
3.
H. Ammari, G. Ciraolo, H. Kang, H. Lee, and G. W. Milton, Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 208 (2013), pp. 667--692.
4.
S. Balac, M. Dauge, and Z. Moitier, Asymptotics for 2D Whispering Gallery Modes in Optical Micro-disks with Radially Varying Index, preprint, https://arxiv.org/abs/2003.14315, 2020.
5.
D. J. Bergman and M. I. Stockman, Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems, Phys. Rev. Lett., 90 (2003), 027402.
6.
E. Bl\aasten, Nonradiating sources and transmission eigenfunctions vanish at corners and edges, SIAM J. Math. Anal., 50 (2018), pp. 6255--6270, https://doi.org/10.1137/18M1182048.
7.
E. Bl\aasten, X. Li, H. Liu, and Y. Wang, On vanishing and localizing of transmission eigenfunctions near singular points: A numerical study, Inverse Problems, 33 (2017), 105001.
8.
E. Bl\aasten and Y.-H. Lin, Radiating and non-radiating sources in elasticity, Inverse Problems, 35 (2019), 015005.
9.
E. Bl\aasten and H. Liu, On corners scattering stably and stable shape determination by a single far-field pattern, Indiana Univ. Math. J., 70 (2021), pp. 907--947.
10.
E. Bl\aasten and H. Liu, On vanishing near corners of transmission eigenfunctions, J. Funct. Anal., 273 (2017), pp. 3616--3632; addendum available from https://arxiv.org/abs/1710.08089.
11.
E. L. K. Bl\aasten and H. Liu, Scattering by curvatures, radiationless sources, transmission eigenfunctions, and inverse scattering problems, SIAM J. Math. Anal., 53 (2021), pp. 3801--3837, https://doi.org/10.1137/20M1384002.
12.
E. Bl\aasten and H. Liu, Recovering piecewise-constant refractive indices by a single far-field pattern, Inverse Problems, 36 (2020), 085005.
13.
E. Bl\aasten, H. Liu, and J. Xiao, On an electromagnetic problem in a corner and its applications, Anal. PDE, to appear.
14.
E. Bl\aasten, L. Päivärinta, and J. Sylvester, Corners always scatter, Comm. Math. Phys., 331 (2014), pp. 725--753.
15.
F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, Springer, New York, 2014.
16.
F. Cakoni, D. Colton, and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, SIAM, Philadelphia, 2016.
17.
F. Cakoni, D. Colton, and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 379--383.
18.
F. Cakoni and J. Xiao, On corner scattering for operators of divergence form and applications to inverse scattering, Comm. Partial Differential Equations, 46 (2021), pp. 413--441.
19.
X. Cao, H. Diao, and H. Liu, Determining a piecewise conductive medium body by a single far-field measurement, CSIAM Trans. Appl. Math., 1 (2020), pp. 740--765.
20.
M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min A terahertz metamaterial with unnaturally high refractive index, Nature, 470 (2011), pp. 369--373.
21.
D. Colton, A. Kirsch, and P. Monk, The linear sampling method in inverse scattering theory, in Surveys on Solution Methods for Inverse Problems, Springer, Vienna, 2000, pp. 107--118.
22.
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th. ed., Springer, New York, 2019.
23.
D. Colton, P. Monk, and J. Sun, Analytical and computational methods for transmission eigenvalues, Inverse Problems, 26 (2010), 045011.
24.
H. Diao, X. Cao, and H. Liu, On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications, Comm. Partial Differential Equations, 46 (2021), pp. 630--679, https://doi.org/10.1080/03605302.2020.1857397.
25.
A. Elgart, G. M. Graf, and J. H. Shenker, Equality of the bulk and the edge Hall conductances in a mobility gap, Comm. Math. Phys., 259 (2005), pp. 185--221.
26.
M. R. Foreman, J. D. Swaim, and F. Vollmer, Whispering gallery mode sensors, Adv. Opt. Photonics, 7 (2015), pp. 168--240.
27.
D. R. Fredkin and I. D. Mayergoyz, Resonant behavior of dielectric objects (electrostatic resonances), Phys. Rev. Lett., 91 (2003), 253902.
28.
R. Griesmaier, Multi-frequency orthogonality sampling for inverse obstacle scattering problems, Inverse Problems, 27 (2011), 085005.
29.
F. D. M. Haldane and S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett., 100 (2008), 013904.
30.
B. I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B, 25 (1982), pp. 2185--2190.
31.
Y. Hatsugai, The Chern number and edge states in the integer quantum hall effect, Phys. Rev. Lett., 71 (1993), pp. 3697--3700.
32.
K. Ito, B. Jin, and J. Zou, A direct sampling method for inverse electromagnetic medium scattering, Inverse Problems, 29 (2013), 095018.
33.
A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Photonic topological insulators, Nat. Mater., 12 (2013), pp. 233--239.
34.
A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), pp. 213--225.
35.
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture Ser. Math. Appl. 36, Oxford University Press, Oxford, UK, 2008.
36.
V. V. Klimov, Nanoplasmonics, CRC Press, Boca Raton, FL, 2014.
37.
B. G. Korenev, Bessel Functions and Their Applications, Chapman & Hall/CRC, Boca Raton, FL, 2002.
38.
H. Li and H. Liu, On anomalous localized resonance and plasmonic cloaking beyond the quasi-static limit, Proc. Roy. Soc. A., 474 (2018), 20180165.
39.
H. Li and H. Liu, On anomalous localized resonance for the elastostatic system, SIAM J. Math. Anal., 48 (2016), pp. 3322--3344, https://doi.org/10.1137/16M1059023.
40.
J. Li, H. Liu, and Q. Wang, Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), pp. 547--561.
41.
S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics, Cambridge University Press, Cambridge, UK, 1995.
42.
H. Liu, On local and global structures of transmission eigenfunctions and beyond, J. Inverse Ill-Posed Probl., (2020), https://doi.org/10.1515/jiip-2020-0099.
43.
H. Liu, X. Liu, X. Wang, and Y. Wang, On a novel inverse scattering scheme using resonant modes with enhanced imaging resolution, Inverse Problems, 35 (2019), 125012.
44.
H. Liu and J. Zou, Zeros of the Bessel and spherical Bessel functions and their applications for uniqueness in inverse acoustic obstacle scattering, IMA J. Appl. Math., 72 (2007), pp. 817--831.
45.
X. Liu, A novel sampling method for multiple multiscale targets from scattering amplitudes at a fixed frequency, Inverse Problems, 33 (2017), 085011.
46.
R. Luc, Spectral analysis on interior transmission eigenvalues, Inverse Problems, 29 (2013), 104001.
47.
G. W. Milton and N.-A. P. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. Roy. Soc. A., 462 (2006), pp. 3027--3059.
48.
F. Ouyang and M. Isaacson, Surface plasmon excitation of objects with arbitrary shape and dielectric constant, Philos. Mag., 60 (1989), pp. 481--492.
49.
L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40 (2008), pp. 738--753, https://doi.org/10.1137/070697525.
50.
C. K. Qu and R. Wong, ``Best possible” upper and lower bounds for the zeros of the Bessel function $J_{\nu}(x)$, Trans. Amer. Math. Soc., 351 (2008), pp. 2833--2859.
51.
M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Photonic Floquet topological insulators, Nature, 496 (2013), pp. 196--200.
52.
J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), pp. 341--354, https://doi.org/10.1137/110836420.
53.
D. J. Thouless, M. Kohmoto, M. P. Nightgale, and M. Den Nijs, Quantized hall conductance in a two dimensional periodic potential, Phys. Rev. Lett., 49 (1982), pp. 405--408.
54.
Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, Reflection-free one-way edge modes in a gyromagnetic photonic crystal, Phys. Rev. Lett., 100 (2008), 013905.
55.
N. Weck, Approximation by Herglotz wave functions, Math. Methods Appl. Sci., 27 (2004), pp. 155--162.
56.
S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43 (2014), pp. 3426--3452.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 946 - 975
ISSN (online): 1936-4954

History

Submitted: 28 December 2020
Accepted: 5 April 2021
Published online: 13 July 2021

Keywords

  1. transmission eigenfunctions
  2. wave localization
  3. super-resolution imaging
  4. surface plasmon resonance
  5. sensing

MSC codes

  1. 35P25
  2. 58J50
  3. 35R30
  4. 78A40

Authors

Affiliations

Funding Information

Hong Kong Research Grants Council : 12301218, 12302919, 12301420

Funding Information

City University of Hong Kong https://doi.org/10.13039/100007567

Funding Information

National Natural Science Foundation of China https://doi.org/10.13039/501100001809 : 11971133, 11971487, 12001140

Funding Information

Natural Science Foundation of Hunan Province https://doi.org/10.13039/501100004735 : 2020JJ2038

Funding Information

Society of Hong Kong Scholars https://doi.org/10.13039/501100005953 : XJ2019005

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.