Open access

Cauchy Theory for General Kinetic Vicsek Models in Collective Dynamics and Mean-Field Limit Approximations

Abstract

In this paper we provide a local Cauchy theory both on the torus and in the whole space for general Vicsek dynamics at the kinetic level. We consider rather general interaction kernels, nonlinear viscosity, and nonlinear friction. Particularly, we include normalized kernels which display a singularity when the flux of particles vanishes. Thus, in terms of the Cauchy theory for the kinetic equation, we extend to more general interactions and complete the program initiated in [I. M. Gamba and M.-J. Kang, Arch. Ration. Mech. Anal., 222 (2016), pp. 317--342] (where the authors assume that the singularity does not take place) and in [A. Figalli, M.-J. Kang, and J. Morales, Arch. Ration. Mech. Anal., 227 (2018), pp. 869--896] (where the authors prove that the singularity does not happen in the spatially homogeneous case). Moreover, we derive an explicit lower time of existence as well as a global existence criterion that is applicable, among other cases, to obtain a long time theory for nonrenormalized kernels and for the original Vicsek problem without any a priori assumptions. On the second part of the paper, we also establish the mean-field limit in the large particle limit for an approximated (regularized) system that coincides with the original one whenever the flux does not vanish. Based on the results proved for the limit kinetic equation, we prove that for short times, the probability that the dynamics of this approximated particle system coincides with the original singular dynamics tends to one in the many particle limit.

Keywords

  1. Vicsek model
  2. Vicsek--Kolmogorov equation
  3. collective dynamics
  4. nonlinear Fokker--Planck equation on the sphere
  5. normalized interaction kernels
  6. mean-field limit
  7. well-posedness

MSC codes

  1. 35A01
  2. 92B05

Formats available

You can view the full content in the following formats:

References

1.
A. Bendali and S. Tordeux, Extension of the Günter Derivatives to Lipschitz Domains and Application to the Boundary Potentials of Elastic Waves, preprint, https://hal.archives-ouvertes.fr/hal-01395952, 2016.
2.
F. Bolley, J. A. Can͂izo, and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., 21 (2011), pp. 2179--2210, https://doi.org/10.1142/S0218202511005702.
3.
F. Bolley, J. A. Can͂izo, and J. A. Carrillo, Mean-field limit for the stochastic Vicsek model, Appl. Math. Lett., 25 (2012), pp. 339--343, https://doi.org/10.1016/j.aml.2011.09.011, http://www.sciencedirect.com/science/article/pii/S0893965911004113.
4.
M. Briant, N. Meunier, and L. Navoret, work in progress.
5.
R. Carmona, Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications, SIAM, Philadelphia, 2016.
6.
J.-B. Caussin, A. Solon, A. Peshkov, H. Chaté, T. Dauxois, J. Tailleur, V. Vitelli, and D. Bartolo, Emergent spatial structures in flocking models: A dynamical system insight, Phys. Rev. Lett., 112 (2014), 148102.
7.
L.-P. Chaintron and A. Diez, Propagation of Chaos: A Review of Models, Methods and Applications, preprint, https://arxiv.org/abs/2106.14812, 2021.
8.
H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, and F. Raynaud, Modeling collective motion: Variations on the Vicsek model, Eur. Phys. J. B, 64 (2008), pp. 451--456.
9.
H. Chaté, F. Ginelli, G. Grégoire, and F. Raynaud, Collective motion of self-propelled particles interacting without cohesion, Phys. Rev. E, 77 (2008), 046113.
10.
I. David, P. Kohnke, G. Lagriffoul, O. Praud, F. Plouarboué, P. Degond, and X. Druart, Mass sperm motility is associated with fertility in sheep, Animal Reproduction Sci., 161 (2015), pp. 75--81.
11.
P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions, Ann. Sci. École Norm. Sup. (4), 19 (1986), pp. 519--542, http://eudml.org/doc/82185.
12.
P. Degond, A. Diez, A. Frouvelle, and S. Merino-Aceituno, Phase transitions and macroscopic limits in a BGK model of body-attitude coordination, Int. J. Nonlinear Sci., 30 (2020), pp. 2671--2736.
13.
P. Degond, G. Dimarco, and T. B. N. Mac, Hydrodynamics of the Kuramoto--Vicsek model of rotating self-propelled particles, Math. Models Methods Appl. Sci., 24 (2014), pp. 277--325.
14.
P. Degond, A. Frouvelle, and J.-G. Liu, A note on phase transitions for the Smoluchowski equation with dipolar potential, in Hyperbolic Problems: Theory, Numerics, Applications (Padova, Italy, 2012), Appl. Math. 8, AIMS, 2012, pp. 179--192, https://hal.archives-ouvertes.fr/hal-00765704.
15.
P. Degond, A. Frouvelle, and J.-G. Liu, Macroscopic limits and phase transition in a system of self-propelled particles, J. Nonlinear Sci., 23 (2013), pp. 427--456.
16.
P. Degond, A. Frouvelle, and J.-G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics, Arch. Ration. Mech. Anal., 216 (2015), pp. 63--115, https://doi.org/10.1007/s00205-014-0800-7
17.
P. Degond, A. Frouvelle, S. Merino-Aceituno, and A. Trescases, Alignment of self-propelled rigid bodies: From particle systems to macroscopic equations, in International Workshop on Stochastic Dynamics out of Equilibrium, Springer, 2017, pp. 28--66.
18.
P. Degond, A. Frouvelle, S. Merino-Aceituno, and A. Trescases, Quaternions in collective dynamics, Multiscale Model. Simul., 16 (2018), pp. 28--77, https://doi.org/10.1137/17M1135207.
19.
P. Degond, A. Manhart, and H. Yu, A continuum model for nematic alignment of self-propelled particles, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), pp. 1295--1327.
20.
P. Degond, A. Manhart, and H. Yu, An age-structured continuum model for myxobacteria, Math. Models Methods Appl. Sci., 28 (2018), pp. 1737--1770.
21.
P. Degond and S. Merino-Aceituno, Nematic alignment of self-propelled particles: From particle to macroscopic dynamics, Math. Models Methods Appl. Sci., 30 (2020), pp. 1935--1986.
22.
P. Degond, S. Merino-Aceituno, F. Vergnet, and H. Yu, Coupled self-organized hydrodynamics and Stokes models for suspensions of active particles, J. Math. Fluid Mech., 21 (2019), 6.
23.
P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), pp. 1193--1215.
24.
P. Degond and S. Motsch, A macroscopic model for a system of swarming agents using curvature control, J. Stat. Phys., 143 (2011), pp. 685--714.
25.
P. Degond and L. Navoret, A multi-layer model for self-propelled disks interacting through alignment and volume exclusion, Math. Models Methods Appl. Sci., 25 (2015), pp. 2439--2475.
26.
M. Doi, Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, J. Polymer Sci. Polymer Phys. Ed., 19 (1981), pp. 229--243, https://doi.org/10.1002/pol.1981.180190205.
27.
R. Duduchava, On Poincaré, Friedrichs and Korns Inequalities on Domains and Hypersurfaces, preprint, https://arxiv.org/abs/1504.01677, 2015.
28.
L. C. Evans, Partial Differential Equations, 2nd ed., Grad. Stud. Math. 19, American Mathematical Society, Providence, RI, 2010, https://doi.org/10.1090/gsm/019.
29.
L. C. Evans, An introduction to Stochastic Differential Equations, American Mathematical Society, Providence, RI, 2012.
30.
A. Figalli, M.-J. Kang, and J. Morales, Global well-posedness of the spatially homogeneous Kolmogorov--Vicsek model as a gradient flow, Arch. Ration. Mech. Anal., 227 (2018), pp. 869--896, https://doi.org/10.1007/s00205-017-1176-2.
31.
A. Frouvelle, A continuum model for alignment of self-propelled particles with anisotropy and density-dependent parameters, Math. Models Methods Appl. Sci., 22 (2012), 1250011.
32.
A. Frouvelle and J.-G. Liu, Dynamics in a kinetic model of oriented particles with phase transition, SIAM J. Math. Anal., 44 (2012), pp. 791--826, https://doi.org/10.1137/110823912.
33.
I. M. Gamba and M.-J. Kang, Global weak solutions for Kolmogorov--Vicsek type equations with orientational interactions, Arch. Ration. Mech. Anal., 222 (2016), pp. 317--342, https://doi.org/10.1007/s00205-016-1002-2.
34.
C. K. Hemelrijk and H. Hildenbrandt, Schools of fish and flocks of birds: Their shape and internal structure by self-organization, Interface Focus, 2 (2012), pp. 726--737.
35.
H. Hildenbrandt, C. Carere, and C. Hemelrijk, Self-organized aerial displays of thousands of starlings: A model, Behavioral Ecology, 21 (2010), pp. 1349--1359, https://doi.org/10.1093/beheco/arq149.
36.
P.-E. Jabin and Z. Wang, Mean Field Limit for Stochastic Particle Systems, in Active Particles, Vol. 1, Springer, 2017, pp. 379--402.
37.
N. Jiang, Y.-L. Luo, and T.-F. Zhang, Coupled self-organized hydrodynamics and Navier--Stokes models: Local well-posedness and the limit from the self-organized kinetic-fluid models, Arch. Ration. Mech. Anal., 236 (2020), pp. 329--387.
38.
N. Jiang, L. Xiong, and T.-F. Zhang, Hydrodynamic limits of the kinetic self-organized models, SIAM J. Math. Anal., 48 (2016), pp. 3383--3411, https://doi.org/10.1137/15M1035665.
39.
M.-J. Kang and J. Morales, Dynamics of a Spatially Homogeneous Vicsek Model for Oriented Particles on the Plane, preprint, https://arxiv.org/abs/1608.00185, 2016.
40.
J. F. Kingman, Uses of exchangeability, Ann. Probab., 6 (1978), pp. 183--197.
41.
B. Maury, A. Roudneff-Chupin, and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., 20 (2010), pp. 1787--1821.
42.
L. Navoret, A two-species hydrodynamic model of particles interacting through self-alignment, Math. Models Methods Appl. Sci., 23 (2013), pp. 1067--1098.
43.
L. Onsager, The effects of shape on the interaction of colloidal particles, Ann. New York Acad. Sci., 51 (1949), pp. 627--659, https://doi.org/10.1111/j.1749-6632.1949.tb27296.x.
44.
F. Otto and A. E. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules, Comm. Math. Phys., 277 (2008), pp. 729--758, https://doi.org/10.1007/s00220-007-0373-5.
45.
D. Poyato, Filippov Flows and Mean-field Limits in the Kinetic Singular Kuramoto Model, preprint, https://arxiv.org/abs/1903.01305, 2019.
46.
L. C. G. Rogers and D. Williams, Diffusions, Markov Processes and Martingales. Volume $2$: Itô Calculus, Cambridge University Press, 2000.
47.
A.-S. Sznitman, Topics in propagation of chaos, in Ecole d'été de probabilités de Saint-Flour XIX--1989, Springer, 1991, pp. 165--251.
48.
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), pp. 1226--1229.
49.
C. Villani, Optimal Transport: Old and New, Grundlehren Math. Wiss. 338, Springer Science & Business Media, 2008.
50.
T.-F. Zhang and N. Jiang, A local existence of viscous self-organized hydrodynamic model, Nonlinear Anal. Real World Appl., 34 (2017), pp. 495--506.

Information & Authors

Information

Published In

cover image SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis
Pages: 1131 - 1168
ISSN (online): 1095-7154

History

Submitted: 17 March 2021
Accepted: 19 October 2021
Published online: 17 February 2022

Keywords

  1. Vicsek model
  2. Vicsek--Kolmogorov equation
  3. collective dynamics
  4. nonlinear Fokker--Planck equation on the sphere
  5. normalized interaction kernels
  6. mean-field limit
  7. well-posedness

MSC codes

  1. 35A01
  2. 92B05

Authors

Affiliations

Funding Information

Austrian Science Fund https://doi.org/10.13039/501100002428 : F65

Funding Information

Imperial College London https://doi.org/10.13039/501100000761

Funding Information

Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266

Funding Information

Vienna Science and Technology Fund https://doi.org/10.13039/501100001821 : VRG17-014

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.