Abstract

In the square root velocity framework and similar approaches, the computation of shape space distances and the registration of curves requires the solution of a nonconvex variational problem. In this paper, we present a new PDE-based method for solving this problem numerically. The method is constructed from numerical approximation of the Hamilton--Jacobi--Bellman equation for the variational problem and has quadratic complexity and global convergence for the distance estimate. In conjunction, we propose a backtracking scheme for approximating solutions of the registration problem, which additionally can be used to compute shape space geodesics. The methods have linear numerical convergence and improved efficiency compared previous global solvers.

Keywords

  1. shape registration
  2. curve matching
  3. square root velocity transform
  4. dynamic programming
  5. Hamilton--Jacobi--Bellman equation

MSC codes

  1. 65D19
  2. 49L20
  3. 65K10
  4. 49Q10

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptot. Anal., 4 (1991), pp. 271--283.
2.
M. Bauer, M. Bruveris, S. Marsland, and P. W. Michor, Constructing reparameterization invariant metrics on spaces of plane curves, Differential Geom. Appl., 34 (2014), pp. 139--165, https://doi.org/10.1016/j.difgeo.2014.04.008.
3.
M. Bauer, N. Charon, E. Klassen, and A. Le Brigant, Intrinsic Riemannian Metrics on Spaces of Curves: Theory and Computation, preprint, https://arxiv.org/abs/2003.05590, 2020.
4.
M. Bauer, M. Eslitzbichler, and M. Grasmair, Landmark-guided elastic shape analysis of human character motions, Inverse Probl. Imaging, 11 (2017), pp. 601--621, https://doi.org/10.3934/ipi.2017028.
5.
J. Bernal, G. Dogan, and C. R. Hagwood, Fast dynamic programming for elastic registration of curves, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016, pp. 1066--1073, https://doi.org/10.1109/CVPRW.2016.137.
6.
J. Bernal, J. Lawrence, G. Dogan, and R. Hagwood, On Computing Elastic Shape Distances Between Curves in d-Dimensional Space, NIST Technical Note 2164, 2021.
7.
M. Bruveris, Optimal reparametrizations in the square root velocity framework, SIAM J. Math. Anal., 48 (2016), pp. 4335--4354, https://doi.org/10.1137/15M1014693.
8.
J. Calder, Directed last passage percolation with discontinuous weights, J. Stat. Phys., 158 (2015), pp. 903--949, https://doi.org/10.1007/s10955-014-1146-0.
9.
J. Calder, Numerical schemes and rates of convergence for the Hamilton-Jacobi equation continuum limit of nondominated sorting, Numer. Math., 137 (2017), pp. 819--856, https://doi.org/10.1007/s00211-017-0895-5.
10.
J. Calder, S. Esedoglu, and A. Hero, A Hamilton--Jacobi equation for the continuum limit of nondominated sorting, SIAM J. Math. Anal., 46 (2013), pp. 603--638, https://doi.org/10.1137/13092842X.
11.
E. Celledoni, M. Eslitzbichler, and A. Schmeding, Shape analysis on Lie groups with applications in computer animation, J. Geom. Mech., 8 (2016), pp. 273--304, https://doi.org/10.3934/jgm.2016008.
12.
B. Cook and J. Calder, Rates of Convergence for the Continuum Limit of Nondominated Sorting, preprint, https://arxiv.org/abs/2006.05953, 2020.
13.
K. Debrabant and E. R. Jakobsen, Semi-Lagrangian Schemes for Linear and Fully Non-Linear Hamilton-Jacobi-Bellman Equations, preprint, https://arxiv.org/abs/1403.1217, 2014.
14.
J.-D. Deuschel and O. Zeitouni, Limiting curves for i.i.d. records, Ann. Probab., 23 (1995), pp. 852--878, http://links.jstor.org/sici?sici=0091-1798(199504)23:2<852:LCFIR>2.0.CO;2-U&origin=MSN.
15.
G. Dogan, J. Bernal, and C. R. Hagwood, A fast algorithm for elastic shape distances between closed planar curves, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
16.
J. Eckhardt, R. Hiptmair, T. Hohage, H. Schumacher, and M. Wardetzky, Elastic energy regularization for inverse obstacle scattering problems, Inverse Problems, 35 (2019), 104009, https://doi.org/10.1088/1361-6420/ab3034.
17.
M. Falcone, A numerical approach to the infinite horizon problem of deterministic control theory, Appl. Math. Optim., 15 (1987), pp. 1--13, https://doi.org/10.1007/BF01442644.
18.
M. Falcone and R. Ferretti, Semi-lagrangian schemes for hamilton--jacobi equations, discrete representation formulae and godunov methods, J. Comput. Phys., 175 (2002), pp. 559--575, https://doi.org/10.1006/jcph.2001.6954.
19.
E. Hartman, Y. Sukurdeep, N. Charon, E. Klassen, and M. Bauer, Supervised Deep Learning of Elastic SRV Distances on the Shape Space of Curves, preprint, https://arxiv.org/abs/2101.04929, 2021.
20.
W. Huang, K. A. Gallivan, A. Srivastava, and P.-A. Absil, Riemannian optimization for registration of curves in elastic shape analysis, J. Math. Imaging Vision, 54 (2016), pp. 320--343, https://doi.org/10.1007/s10851-015-0606-8.
21.
M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, Int. J. Comput. Vis., 1 (1988), pp. 321--331.
22.
S. Kurtek, E. Klassen, Z. Ding, S. W. Jacobson, J. L. Jacobson, M. J. Avison, and A. Srivastava, Parameterization-invariant shape comparisons of anatomical surfaces, IEEE Trans. Medical Imaging, 30 (2011), pp. 849--858, https://doi.org/10.1109/TMI.2010.2099130.
23.
S. Kurtek, E. Klassen, J. C. Gore, Z. Ding, and A. Srivastava, Elastic geodesic paths in shape space of parameterized surfaces, IEEE Trans. Pattern Anal. Machine Intelligence, 34 (2012), pp. 1717--1730, https://doi.org/10.1109/TPAMI.2011.233.
24.
S. Lahiri, D. Robinson, and E. Klassen, Precise matching of PL curves in $\Bbb R^N$ in the square root velocity framework, Geom. Imaging Comput., 2 (2015), pp. 133--186, https://doi.org/10.4310/GIC.2015.v2.n3.a1.
25.
W. Liu, A. Srivastava, and J. Zhang, A mathematical framework for protein structure comparison, PLoS Comput. Biol., 7 (2011), e1001075, https://doi.org/10.1371/journal.pcbi.1001075.
26.
M. Mani, S. Kurtek, C. Barillot, and A. Srivastava, A comprehensive Riemannian framework for the analysis of white matter fiber tracts, in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2010, pp. 1101--1104, https://doi.org/10.1109/ISBI.2010.5490185.
27.
W. Mio, A. Srivastava, and S. Joshi, On shape of plane elastic curves, Int. J. Comput. Vis., 73 (2007), pp. 307--324, https://doi.org/10.1007/s11263-006-9968-0.
28.
T. Needham and S. Kurtek, Simplifying transforms for general elastic metrics on the space of plane curves, SIAM J. Imaging Sci., 13 (2020), pp. 445--473, https://doi.org/10.1137/19M1265132.
29.
E. Nunez and S. H. Joshi, Deep learning of warping functions for shape analysis, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 3782--3790, https://doi.org/10.1109/CVPRW50498.2020.00441.
30.
A. Srivastava, E. Klassen, S. Joshi, and I. Jermyn, Shape analysis of elastic curves in euclidean spaces, IEEE Trans. Pattern Anal. Machine Intelligence, 33 (2010), pp. 1415--1428, https://doi.org/10.1109/TPAMI.2010.184.
31.
A. Srivastava and E. P. Klassen, Functional and Shape Data Analysis, Springer Ser. Statist., Springer-Verlag, New York, 2016.
32.
G. Sundaramoorthi, A. Mennucci, S. Soatto, and A. Yezzi, A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering, SIAM J. Imaging Sci., 4 (2011), pp. 109--145, https://doi.org/10.1137/090781139.
33.
W. Thawinrak and J. Calder, High-order filtered schemes for the Hamilton-Jacobi continuum limit of nondominated sorting, J. Math. Res., 10 (2017), https://doi.org/10.5539/jmr.v10n1p90.
34.
A. Trouvé and L. Younes, On a class of diffeomorphic matching problems in one dimension, SIAM J. Control Optim., 39 (2000), pp. 1112--1135, https://doi.org/10.1137/S036301299934864X.
35.
L. Younes, Computable elastic distances between shapes, SIAM J. Appl. Math., 58 (1998), pp. 565--586, https://doi.org/10.1137/S0036139995287685.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 762 - 796
ISSN (online): 1936-4954

History

Submitted: 31 March 2021
Accepted: 17 December 2021
Published online: 7 June 2022

Keywords

  1. shape registration
  2. curve matching
  3. square root velocity transform
  4. dynamic programming
  5. Hamilton--Jacobi--Bellman equation

MSC codes

  1. 65D19
  2. 49L20
  3. 65K10
  4. 49Q10

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.