Convergence Analysis of the Variational Operator Splitting Scheme for a Reaction-Diffusion System with Detailed Balance

Abstract

We present a detailed convergence analysis for an operator splitting scheme proposed in [C. Liu, C. Wang, and Y. Wang, J. Comput. Phys., 436 (2021), 110253] for a reaction-diffusion system with detailed balance. The numerical scheme has been constructed based on a recently developed energetic variational formulation, in which the reaction part is reformulated in terms of the reaction trajectory, and both the reaction and diffusion parts dissipate the same free energy. The scheme is energy stable and positivity-preserving. In this paper, the detailed convergence analysis and error estimate are performed for the operator splitting scheme. The nonlinearity in the reaction trajectory equation, as well as the implicit treatment of nonlinear and singular logarithmic terms, impose challenges in numerical analysis. To overcome these difficulties, we make use of the convex nature of the logarithmic nonlinear terms. In addition, a combination of rough error estimate and refined error estimate leads to a desired bound of the numerical error in the reaction stage, in the discrete maximum norm. Furthermore, a discrete maximum principle yields the evolution bound of the numerical error function at the diffusion stage. As a direct consequence, a combination of the numerical error analysis at different stages and the consistency estimate for the operator splitting procedure results in the convergence estimate of the numerical scheme for the full reaction-diffusion system. The convergence analysis technique could be extended to a more general class of dissipative reaction mechanisms. As an example, we also consider a near-equilibrium reaction kinetics, which was derived by the linear response assumption on the reaction trajectory. Although the reaction rate is more complicated in terms of concentration variables, we show that the numerical approach and the convergence analysis also work in this case.

Keywords

  1. reaction-diffusion system
  2. energetic variational formulation
  3. operator splitting scheme
  4. positivity preserving
  5. optimal rate convergence analysis
  6. rough error estimate and refined error estimate

MSC codes

  1. 35K35
  2. 35K55
  3. 49J40
  4. 65M06
  5. 65M12

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. Abels and M. Wilke, Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 67 (2007), pp. 3176--3193.
2.
D. F. Anderson, G. Craciun, M. Gopalkrishnan, and C. Wiuf, Lyapunov functions, stationary distributions, and non-equilibrium potential for reaction networks, Bull. Math. Biol., 77 (2015), pp. 1744--1767.
3.
D. N. Arnold, Stability, consistency, and convergence of numerical discretizations, in Encyclopedia of Applied and Computational Mathematics, B. Engquist, ed., Springer, Berlin, Heidelberg, pp. 1358--1364, https://doi.org/10.1007/978-3-540-70529-1_407.
4.
S. Badia, R. Planas, and J. V. Gutiérrez-Santacreu, Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections, Internat. J. Numer. Methods Engrg., 93 (2013), pp. 302--328.
5.
W. Bao, S. Jin, and P. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175 (2002), pp. 487--524.
6.
A. Bátkai, P. Csomós, and B. Farkas, Operator splitting for nonautonomous delay equations, Comput. Math. Appl., 65 (2013), pp. 315--324.
7.
C. Besse, B. Bidégaray, and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 40 (2002), pp. 26--40, https://doi.org/10.1137/S0036142900381497.
8.
W. Chen, C. Wang, X. Wang, and S. Wise, Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential, J. Comput. Phys. X, 3 (2019), 100031.
9.
M. Chipot, D. Kinderlehrer, and M. Kowalczyk, A variational principle for molecular motors, Meccanica, 38 (2003), pp. 505--518.
10.
T. De Donder, L'affinité, Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8, 9 (1927), pp. 1--94.
11.
A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 24 (1995), pp. 1491--1514.
12.
S. Descombes, Convergence of a splitting method of high order for reaction-diffusion systems, Math. Comp., 70 (2001), pp. 1481--1501.
13.
S. Descombes and M. Massot, Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction, Numer. Math., 97 (2004), pp. 667--698.
14.
L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction--diffusion equations, J. Math. Anal. Appl., 319 (2006), pp. 157--176.
15.
L. Desvillettes, K. Fellner, and B. Q. Tang, Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks, SIAM J. Math. Anal., 49 (2017), pp. 2666--2709, https://doi.org/10.1137/16M1073935.
16.
L. Dong, C. Wang, S. Wise, and Z. Zhang, A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters, J. Comput. Phys., 442 (2021), 110451.
17.
L. Dong, C. Wang, H. Zhang, and Z. Zhang, A positivity-preserving, energy stable and convergent numerical scheme for the Cahn-Hilliard equation with a Flory-Huggins-deGennes energy, Commun. Math. Sci., 17 (2019), pp. 921--939.
18.
L. Dong, C. Wang, H. Zhang, and Z. Zhang, A positivity-preserving second-order BDF scheme for the Cahn-Hilliard equation with variable interfacial parameters, Commun. Comput. Phys., 28 (2020), pp. 967--998.
19.
C. Duan, C. Liu, C. Wang, and X. Yue, Convergence analysis of a numerical scheme for the porous medium equation by an energetic variational approach, Numer. Math. Theoret. Methods Appl., 13 (2020), pp. 63--80.
20.
L. Einkemmer and A. Ostermann, An almost symmetric Strang splitting scheme for nonlinear evolution equations, Comput. Math. Appl., 67 (2014), pp. 2144--2157.
21.
L. Einkemmer and A. Ostermann, Convergence analysis of Strang splitting for Vlasov-type equations, SIAM J. Numer. Anal., 52 (2014), pp. 140--155, https://doi.org/10.1137/130918599.
22.
C. M. Elliott and H. Garcke, On the Cahn--Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), pp. 404--423, https://doi.org/10.1137/S0036141094267662.
23.
M.-H. Giga, A. Kirshtein, and C. Liu, Variational Modeling and Complex Fluids, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, 2018, pp. 73--113.
24.
A. Giorgini, M. Grasselli, and A. Miranville, The Cahn-Hiliard-Ono equation with singular potential, Math. Models Methods Appl. Sci., 27 (2017), pp. 2485--2510.
25.
A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction--diffusion effects in bulk and interfaces, Z. Angew. Math. Phys., 64 (2013), pp. 29--52.
26.
W. Hao and C. Xue, Spatial pattern formation in reaction--diffusion models: A computational approach, J. Math. Biol., 80 (2020), pp. 521--543.
27.
J. Haskovec, S. Hittmeir, P. Markowich, and A. Mielke, Decay to equilibrium for energy-reaction-diffusion systems, SIAM J. Math. Anal., 50 (2018), pp. 1037--1075, https://doi.org/10.1137/16M1062065.
28.
A. Hawkins-Daarud, K. G. van der Zee, and J. Tinsley Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Methods Biomed. Eng., 28 (2012), pp. 3--24.
29.
E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Courier Corporation, 2012.
30.
F. Jülicher, A. Ajdari, and J. Prost, Modeling molecular motors, Rev. Modern Phys., 69 (1997), pp. 1269--1282.
31.
M. Koleva and L. Vulkov, Operator splitting kernel based numerical method for a generalized Leland's model, J. Comput. Appl. Math., 275 (2015), pp. 294--303.
32.
S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), pp. 1616--1620.
33.
H. G. Lee and J. Y. Lee, A second order operator splitting method for Allen-Cahn type equations with nonlinear source terms, Phys. A, 432 (2015), pp. 24--34.
34.
X. Li, Z. Qiao, and H. Zhang, Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection, SIAM J. Numer. Anal., 55 (2017), pp. 265--285, https://doi.org/10.1137/15M1041122.
35.
M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction--diffusion systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 20120346.
36.
C. Liu and J.-E. Sulzbach, Well-posedness for the Reaction-diffusion Equation with Temperature in a Critical Besov Space, preprint, https://arxiv.org/abs/2101.10419, 2021.
37.
C. Liu, C. Wang, and Y. Wang, A structure-preserving, operator splitting scheme for reaction-diffusion equations involving the law of mass action, J. Comput. Phys., 436 (2021), 110253.
38.
C. Liu, C. Wang, S. M. Wise, X. Yue, and S. Zhou, A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system, Math. Comp., 90 (2021), pp. 2071--2106.
39.
J.-G. Liu, M. Tang, L. Wang, and Z. Zhou, An accurate front capturing scheme for tumor growth models with a free boundary limit, J. Comput. Phys., 364 (2018), pp. 73--94.
40.
C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations, Math. Comp., 77 (2008), pp. 2141--2153.
41.
A. Mielke, A gradient structure for reaction--diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), pp. 1329--1346.
42.
A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), pp. 479--499.
43.
A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), pp. 545--582.
44.
L. Onsager, Reciprocal relations in irreversible processes. I, Phys. Rev., 37 (1931), pp. 405--426.
45.
L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev., 38 (1931), pp. 2265--2279.
46.
J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), pp. 189--192.
47.
B. Perthame, F. Quirós, and J. L. Vázquez, The Hele--Shaw asymptotics for mechanical models of tumor growth, Arch. Ration. Mech. Anal., 212 (2014), pp. 93--127.
48.
J. Prost, F. Jülicher, and J.-F. Joanny, Active gel physics, Nature Phys., 11 (2015), pp. 111--117.
49.
Y. Qian, C. Wang, and S. Zhou, A positive and energy stable numerical scheme for the Poisson-Nernst-Planck-Cahn-Hilliard equations with steric interactions, J. Comput. Phys., 426 (2021), p. 109908.
50.
D. Shear, An analog of the Boltzmann $h$-theorem (a Liapunov function) for systems of coupled chemical reactions, J. Theoret. Biol., 16 (1967), pp. 212--228.
51.
J. Shen and Z. Wang, Error analysis of the Strang time-splitting Laguerre-Hermite/Hermite collocation methods for the Gross-Pitaevskii equation, Found. Comput. Math., 13 (2013), pp. 99--137.
52.
M. Thalhammer, Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations, SIAM J. Numer. Anal., 50 (2012), pp. 3231--3258, https://doi.org/10.1137/120866373.
53.
H. Wang, C. S. Peskin, and T. C. Elston, A robust numerical algorithm for studying biomolecular transport processes, J. Theoret. Biol., 221 (2003), pp. 491--511.
54.
Y. Wang, C. Liu, P. Liu, and B. Eisenberg, Field theory of reaction-diffusion: Mass action with an energetic variational approach, Phys. Rev. E, 102 (2020), 062147.
55.
Y. Wang, T.-F. Zhang, and C. Liu, A two species micro--macro model of wormlike micellar solutions and its maximum entropy closure approximations: An energetic variational approach, J. Non-Newtonian Fluid Mech., 293 (2021), 104559.
56.
J. Wei, Axiomatic treatment of chemical reaction systems, J. Chem. Phys., 36 (1962), pp. 1578--1584.
57.
M. Yuan, W. Chen, C. Wang, S. Wise, and Z. Zhang, An energy stable finite element scheme for the three-component Cahn-Hilliard-type model for macromolecular microsphere composite hydrogels, J. Sci. Comput., 87 (2021), 78.
58.
C. Zhang, J. Huang, C. Wang, and X. Yue, On the operator splitting and integral equation preconditioned deferred correction methods for the “good" Boussinesq equation, J. Sci. Comput., 75 (2018), pp. 687--712.
59.
C. Zhang, H. Wang, J. Huang, C. Wang, and X. Yue, A second order operator splitting numerical scheme for the “good" Boussinesq equation, Appl. Numer. Math., 119 (2017), pp. 179--193.
60.
J. Zhang, C. Wang, S. M. Wise, and Z. Zhang, Structure-preserving, energy stable numerical schemes for a liquid thin film coarsening model, SIAM J. Sci. Comput., 43 (2021), pp. A1248--A1272, https://doi.org/10.1137/20M1375656.
61.
S. Zhao, Operator splitting ADI schemes for pseudo-time coupled nonlinear solvation simulations, J. Comput. Phys., 257 (2014), pp. 1000--1021.
62.
S. Zhao, J. Ovadia, X. Liu, Y.-T. Zhang, and Q. Nie, Operator splitting implicit integration factor methods for stiff reaction--diffusion--advection systems, J. Comput. Phys., 230 (2011), pp. 5996--6009.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 781 - 803
ISSN (online): 1095-7170

History

Submitted: 20 May 2021
Accepted: 27 January 2022
Published online: 13 April 2022

Keywords

  1. reaction-diffusion system
  2. energetic variational formulation
  3. operator splitting scheme
  4. positivity preserving
  5. optimal rate convergence analysis
  6. rough error estimate and refined error estimate

MSC codes

  1. 35K35
  2. 35K55
  3. 49J40
  4. 65M06
  5. 65M12

Authors

Affiliations

Funding Information

Illinois Institute of Technology https://doi.org/10.13039/100012792
National Science Foundation https://doi.org/10.13039/100000001 : DMS-1759536, DMS-1950868, DMS-2012669, DMS-1719854, DMS-2012634

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.