Abstract.

We propose a new deterministic Kaczmarz algorithm for solving consistent linear systems \(A{\bf x}={\bf b}\). Basically, the algorithm replaces orthogonal projections with reflections in the original scheme of Stefan Kaczmarz. Building on this, we give a geometric description of solutions of linear systems. Suppose \(A\) is \(m\times n\), we show that the algorithm generates a series of points distributed with patterns on an \((n-1)\)-sphere centered on a solution. These points lie evenly on \(2m\) lower-dimensional spheres \(\{\mathbb{S}_{k0},\mathbb{S}_{k1}\}_{k=1}^m\), with the property that for any \(k\), the midpoint of the centers of \(\mathbb{S}_{k0},\mathbb{S}_{k1}\) is exactly a solution of \(A{\bf x}={\bf b}\). With this discovery, we prove that taking the average of \(O(\eta (A)\log (1/\varepsilon ))\) points on any \(\mathbb{S}_{k0}\cup \mathbb{S}_{k1}\) effectively approximates a solution up to relative error \(\varepsilon\), where \(\eta (A)\) characterizes the eigengap of the orthogonal matrix produced by the product of \(m\) reflections generated by the rows of \(A\). We also analyze the connection between \(\eta (A)\) and \(\kappa (A)\), the condition number of \(A\). In the worst case \(\eta (A)=O(\kappa^2(A)\log m)\), while for random matrices \(\eta (A)=O(\kappa (A))\) on average. Finally, we prove that the algorithm indeed solves the linear system \(A^{{\tt T}}W^{-1}A{\bf x} = A^{{\tt T}}W^{-1}{\bf b}\), where \(W\) is the lower-triangular matrix such that \(W+W^{{\tt T}}=2AA^{{\tt T}}\). The connection between this linear system and the original one is studied. The numerical tests indicate that this new Kaczmarz algorithm has comparable performance to randomized (block) Kaczmarz algorithms.

Keywords

  1. Kaczmarz algorithm
  2. linear systems
  3. reflections

MSC codes

  1. 65F10

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments.

The author would like to thank Alex Little and Nina Snaith for their helpful discussions on Proposition 3.6, and the anonymous referees for valuable suggestions which greatly improved this work. The author also would like to thank Gilbert Strang for his helpful suggestions on this paper.

References

1.
S. Agmon, The relaxation method for linear inequalities, Canad. J. Math., 6 (1954), pp. 382–392.
2.
J. R. Angelos, C. C. Cowen, and S. K. Narayan, Triangular truncation and finding the norm of a Hadamard multiplier, Linear Algebra Appl., 170 (1992), pp. 117–135.
3.
R. Ansorge, Connections between the Cimmino-method and the Kaczmarz-method for the solution of singular and regular systems of equations, Computing, 33 (1984), pp. 367–375.
4.
M. Benzi, Gianfranco Cimmino’s contributions to numerical mathematics, Atti del Seminario di Analisi Matematica, Dipartimento di Matematica dell’Universita di Bologna. Volume Speciale: Ciclo di Conferenze in Ricordo di Gianfranco Cimmino, 2004, pp. 87–109.
5.
T. Brady and C. Watt, On products of Euclidean reflections, Amer. Math. Monthly, 113 (2006), pp. 826–829.
6.
Y. Censor, Row-action methods for huge and sparse systems and their applications, SIAM Rev., 23 (1981), pp. 444–466, https://doi.org/10.1137/1023097.
7.
Y. Censor, P. P. Eggermont, and D. Gordon, Strong underrelaxation in Kaczmarz’s method for inconsistent systems, Numer. Math., 41 (1983), pp. 83–92.
8.
J.-Q. Chen and Z.-D. Huang, On a fast deterministic block Kaczmarz method for solving large-scale linear systems, Numer. Algorithms, 89 (2022), pp. 1007–1029.
9.
G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La Ricerca Scientifica, II (1938), pp. 326–333.
10.
J. E. Cohen, H. Kesten, and C. M. Newman, Random Matrices and Their Applications, Proceedings of a Summer Research Conference Held June 17–23, 1984, Contemp. Math. 50, American Mathematical Society, Providence, RI, 1986.
11.
F. Deutsch, Rate of convergence of the method of alternating projections, Birkhäuser Basel, Basel, 1985, pp. 96–107, https://doi.org/10.1007/978-3-0348-6253-0_7.
12.
F. Deutsch and H. Hundal, The rate of convergence for the method of alternating projections, II, J. Math. Anal. Appl., 205 (1997), pp. 381–405, https://doi.org/10.1006/jmaa.1997.5202.
13.
A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 543–560, https://doi.org/10.1137/0609045.
14.
P. P. B. Eggermont, G. T. Herman, and A. Lent, Iterative algorithms for large partitioned linear systems, with applications to image reconstruction, Linear Algebra Appl., 40 (1981), pp. 37–67.
15.
Y. C. Eldar and D. Needell, Acceleration of randomized Kaczmarz method via the Johnson-Lindenstrauss lemma, Numer. Algorithms, 58 (2011), pp. 163–177.
16.
H. G. Feichtinger, C. Cenker, M. Mayer, H. Steier, and T. Strohmer, New variants of the POCS method using affine subspaces of finite codimension with applications to irregular sampling, Visual Communications and Image Processing ’92, Vol. 1818, SPIE, 1992, pp. 299–310.
17.
A. Galántai, On the rate of convergence of the alternating projection method in finite dimensional spaces, J. Math. Anal. Appl., 310 (2005), pp. 30–44, https://doi.org/10.1016/j.jmaa.2004.12.050.
18.
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., The Johns Hopkins University Press, Baltimore, 2013.
19.
R. Gordon, R. Bender, and G. T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography, J. Theoret. Biol., 29 (1970), pp. 471–481, https://doi.org/10.1016/0022-5193(70)90109-8.
20.
R. Gower, D. Molitor, J. Moorman, and D. Needell, Adaptive Sketch-and-Project Methods for Solving Linear Systems, preprint, https://arxiv.org/abs/1909.03604, 2019.
21.
R. M. Gower and P. Richtárik, Randomized iterative methods for linear systems, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 1660–1690, https://doi.org/10.1137/15M1025487.
22.
C. Hildreth., A quadratic programming procedure, Naval Res. Logist. Q., 4 (1957), pp. 79–85.
23.
B. Jarman, N. Mankovich, and J. D. Moorman, Randomized Extended Kaczmarz is a Limit Point of Sketch-and-Project, preprint, arXiv:2110.05605, 2021.
24.
Y. Jiao, B. Jin, and X. Lu, Preasymptotic convergence of randomized Kaczmarz method, Inverse Problems, 33 (2017), 125012.
25.
S. Karczmarz, Angenaherte auflosung von systemen linearer glei-chungen, Bull. Int. Acad. Pol. Sic. Let., Cl. Sci. Math. Nat., (1937), pp. 355–357.
26.
A. Ma, D. Needell, and A. Ramdas, Convergence properties of the randomized extended Gauss–Seidel and Kaczmarz methods, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 1590–1604, https://doi.org/10.1137/15M1014425.
27.
E. S. Meckes, The Random Matrix Theory of the Classical Compact Groups, Cambridge Tracts Math. 218, Cambridge University Press, Cambridge, 2019.
28.
J. D. Moorman, T. K. Tu, D. Molitor, and D. Needell, Randomized Kaczmarz with averaging, BIT Numer. Math., 61 (2021), pp. 337–359.
29.
T. S. Motzkin and I. J. Schoenberg, The relaxation method for linear inequalities, Canad. J. Math., 6 (1954), pp. 393–404.
30.
I. Necoara, Faster randomized block Kaczmarz algorithms, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1425–1452, https://doi.org/10.1137/19M1251643.
31.
D. Needell and J. A. Tropp, Paved with good intentions: Analysis of a randomized block Kaczmarz method, Linear Algebra Appl., 441 (2014), pp. 199–221.
32.
D. Needell, R. Ward, and N. Srebro, Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm, Adv. Neural Inf. Process. Syst., 27 (2014), pp. 1017–1025.
33.
D. Needell, R. Zhao, and A. Zouzias, Randomized block Kaczmarz method with projection for solving least squares, Linear Algebra Appl., 484 (2015), pp. 322–343.
34.
Y.-Q. Niu and B. Zheng, A greedy block Kaczmarz algorithm for solving large-scale linear systems, Appl. Math. Lett., 104 (2020), 106294.
35.
J. Nutini, B. Sepehry, A. Virani, I. Laradji, M. Schmidt, and H. Koepke, Convergence rates for greedy kaczmarz algorithms, in Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, 2016, pp. 547–556.
36.
S. Petra and C. Popa, Single projection Kaczmarz extended algorithms, Numer. Algorithms, 73 (2016), pp. 791–806.
37.
P. Richtárik and M. Takác, Stochastic reformulations of linear systems: Algorithms and convergence theory, SIAM J. Matrix Anal., 41 (2020), pp. 487–524, https://doi.org/10.1137/18M1179249.
38.
C. Shao and A. Montanaro, Faster quantum-inspired algorithms for solving linear systems, ACM Trans. Quantum Comput., 3 (2022), p. 20.
39.
C. Shao and H. Xiang, Row and column iteration methods to solve linear systems on a quantum computer, Phys. Rev. A, 101 (2020), 022322.
40.
S. Steinerberger, Surrounding the solution of a linear system of equations from all sides, Quart. Appl. Math., 79 (2021), pp. 419–429.
41.
T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl., 15 (2009), pp. 262–278.
42.
K. Tanabe, Projection method for solving a singular system of linear equations and its applications, Numer. Math., 17 (1971), pp. 203–214.
43.
T. Tao and V. Vu, Smooth analysis of the condition number and the least singular value, Math. Comput., 79 (2010), pp. 2333–2352.
44.
N. Wu and H. Xiang, Projected randomized Kaczmarz methods, J. Comput. Appl. Math., 372 (2020), 112672.
45.
H. Xiang and L. Zhang, Randomized Iterative Methods with Alternating Projections, preprint, https://arxiv.org/abs/1708.09845, 2017.
46.
Y. Yaniv, J. D. Moorman, W. Swartworth, T. Tu, D. Landis, and D. Needell, Selectable Set Randomized Kaczmarz, preprint, https://arxiv.org/abs/2110.04703, 2021.
47.
A. Zouzias and N. M. Freris, Randomized extended Kaczmarz for solving least squares, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 773–793, https://doi.org/10.1137/120889897.

Information & Authors

Information

Published In

cover image SIAM Journal on Matrix Analysis and Applications
SIAM Journal on Matrix Analysis and Applications
Pages: 212 - 239
ISSN (online): 1095-7162

History

Submitted: 3 December 2021
Accepted: 3 November 2022
Published online: 10 March 2023

Keywords

  1. Kaczmarz algorithm
  2. linear systems
  3. reflections

MSC codes

  1. 65F10

Authors

Affiliations

Changpeng Shao Contact the author
School of Mathematics, University of Bristol, Bristol, BS8 1UG, UK.

Funding Information

Funding: This work was supported by the EPSRC grant EP/T001062/1 and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme grant 817581.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media