Abstract.

Magnetic resonance elastography is a motion-sensitive image modality that allows to measure in vivo tissue displacement fields in response to mechanical excitations. This paper investigates a data assimilation approach for reconstructing tissue displacement and pressure fields in an in silico brain model from partial elastography data. The data assimilation is based on a parametrized-background data-weak methodology, in which the state of the physical system—tissue displacements and pressure fields—is reconstructed from the available data assuming an underlying poroelastic biomechanics model. For this purpose, a physics-informed manifold is built by sampling the space of parameters describing the tissue model close to their physiological ranges to simulate the corresponding poroelastic problem and computing a reduced basis via proper orthogonal decomposition. Displacements and pressure reconstruction are sought in a reduced space after solving a minimization problem that encompasses both the structure of the reduced-order model and the available measurements. The proposed pipeline is validated using synthetic data obtained after simulating the poroelastic mechanics of a physiological brain. The numerical experiments demonstrate that the framework can exhibit accurate joint reconstructions of both displacement and pressure fields. The methodology can be formulated for an arbitrary resolution of available displacement data from pertinent images. It can also inherently handle uncertainty on the physical parameters of the mechanical model by enlarging the physics-informed manifold accordingly. Moreover, the framework can be used to characterize, in silico, biomarkers for pathological conditions by appropriately training the reduced-order model. A first application for the noninvasive estimation of ventricular pressure as an indicator of abnormal intracranial pressure is shown in this contribution.

Keywords

  1. elastography
  2. data assimilation
  3. state estimation
  4. finite element method
  5. poroelasticity
  6. reduced-order modeling

MSC codes

  1. 35R30
  2. 65N21
  3. 74L15
  4. 92-08

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, Magnetic resonance elastography by direct visualization of propagating acoustic strain waves, Science, 269 (1995), pp. 1854–1857.
2.
D. Fovargue, D. Nordsletten, and R. Sinkus, Stiffness reconstruction methods for MR elastography, NMR Biomed., 31 (2018), e3935.
3.
I. Sack, B. Beierbach, U. Hamhaber, D. Klatt, and J. Braun, Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography, NMR Biomed., 21 (2008), pp. 265–271.
4.
I. Sack and T. Schäffter, eds., Quantification of Biophysical Parameters in Medical Imaging, Springer-Verlag, Berlin, 2018.
5.
A. Manduca, P. J. Bayly, E. L. Ehman, A. Kolipaka, T. J. Royston, I. Sack, R. Sinkus, and B. E. Van Beers, MR elastography: Principles, guidelines, and terminology, Magn. Reson. Med., 85 (2021), pp. 2377–2390.
6.
G. Bertalan, C. Klein, S. Schreyer, B. Steiner, B. Kreft, H. Tzschätzsch, A. Ariza, M. Nieminen-Kelhä, J. Braun, J. Guo, and I. Sack, Biomechanical properties of the hypoxic and dying brain quantified by magnetic resonance elastography, Acta Biomater., 101 (2020), pp. 395–402.
7.
R. Reiter, M. Shahryari, H. Tzschätzsch, D. Klatt, B. Siegmund, B. Hamm, and P. Asbach, Spatial heterogeneity of hepatic fibrosis in primary sclerosing cholangitis vs. viral hepatitis assessed by MR elastography, Sci. Rep., 11 (2021), pp. 1–8.
8.
K. J. Streitberger, L. Lilaj, F. Schrank, J. Braun, K. T. Hoffmann, M. Reiss-Zimmermann, and I. Sack, How tissue fluidity influences brain tumor progression, Proc. Natl. Acad. Sci., 117 (2020), pp. 128–134.
9.
A. Bunevicius, K. Schregel, R. Sinkus, A. Golby, and S. Patz, Review: MR elastography of brain tumors, Neuroimage Clin., 25 (2020), 102109.
10.
L. V. Hiscox, C. L. Johnson, E. Barnhill, M. D. McGarry, J. Huston, E. J. van Beek, J. M. Starr, and N. Roberts, Magnetic resonance elastography (MRE) of the human brain: Technique, findings and clinical applications, Phys. Med. Biol., 61 (2016), pp. R401–R437.
11.
J. Ren, X. Wu, J. Huang, X. Cao, Q. Yuan, D. Zhang, Z. Du, P. Zhong, and J. Hu, Intracranial pressure monitoring-aided management associated with favorable outcomes in patients with hypertension-related spontaneous intracerebral hemorrhage, Transl. Stroke Res., 11 (2020), pp. 1253–1263.
12.
N. Fattahi, A. Arani, A. Perry, F. Meyer, A. Manduca, K. Glaser, M. L. Senjem, R. L. Ehman, and J. Huston, MR elastography demonstrates increased brain stiffness in normal pressure hydrocephalus, Amer. J. Neuroradiol., 37 (2016), pp. 462–467.
13.
J. S. Aunan-Diop, C. B. Pedersen, B. Halle, U. Jensen, S. Munthe, F. Harbo, B. Johannsson, and F. R. Poulsen, Magnetic resonance elastography in normal pressure hydrocephalus—A scoping review, Neurosurg. Rev., 45 (2022), pp. 1157–1169.
14.
B. Kreft, H. Tzschätzsch, M. Sharyari, P. Haffner, J. Braun, I. Sack, and K.-J. Streitberger, Noninvasive detection of intracranial hypertension by novel ultrasound time-harmonic elastography, Invest. Radiol., 57 (2022), pp. 77–84.
15.
S. Hirsch, J. Guo, R. Reiter, E. Schott, C. Büning, R. Somasundaram, J. Braun, I. Sack, and T. J. Kroencke, Towards compression-sensitive magnetic resonance elastography of the liver: Sensitivity of harmonic volumetric strain to portal hypertension, J. Magn. Reson. Imaging, 39 (2014), pp. 298–306.
16.
S. Hetzer, P. Birr, A. Fehlner, S. Hirsch, F. Dittmann, E. Barnhill, J. Braun, and I. Sack, Perfusion alters stiffness of deep gray matter, J. Cereb. Blood Flow Metab., 38 (2018), pp. 116–125.
17.
L. M. Solamen, M. D. J. McGarry, J. Fried, J. B. Weaver, S. S. Lollis, and K. D. Paulsen, Poroelastic mechanical properties of the brain tissue of normal pressure hydrocephalus patients during lumbar drain treatment using intrinsic actuation MR elastography, Acad. Radiol., 28 (2021), pp. 457–466.
18.
M. D. McGarry, E. E. Van Houten, L. Solamen, S. Gordon-Wylie, J. B. Weaver, and K. D. Paulsen, Uniqueness of poroelastic and viscoelastic nonlinear inversion MR elastography at low frequencies, Phys. Med. Biol., 64 (2019), 075006.
19.
L. Lilaj, T. Fischer, J. Guo, J. Braun, I. Sack, and S. Hirsch, Separation of fluid and solid shear wave fields and quantification of coupling density by magnetic resonance poroelastography, Magn. Reson. Med., 85 (2021), pp. 1655–1668.
20.
R. Leiderman, P. E. Barbone, A. A. Oberai, and J. C. Bamber, Coupling between elastic strain and interstitial fluid flow: Ramifications for poroelastic imaging, Phys. Med. Biol., 51 (2006), pp. 6291–6313.
21.
M. D. McGarry, C. L. Johnson, B. P. Sutton, J. G. Georgiadis, E. E. Van Houten, A. J. Pattison, J. B. Weaver, and K. D. Paulsen, Suitability of poroelastic and viscoelastic mechanical models for high and low frequency MR elastography, Med. Phys., 42 (2015), pp. 947–957.
22.
A. J. Pattison, M. D. McGarry, J. B. Weaver, and K. D. Paulsen, Spatially-resolved hydraulic conductivity estimation via poroelastic magnetic resonance elastography, IEEE Trans. Med. Imaging., 33 (2014), pp. 1373–1380.
23.
S. Budday, G. Sommer, C. Birkl, C. Langkammer, J. Haybaeck, J. Kohnert, M. Bauer, F. Paulsen, P. Steinmann, E. Kuhl, and G. A. Holzapfel, Mechanical characterization of human brain tissue, Acta Biomater., 48 (2017), pp. 319–340.
24.
R. de Rooij and E. Kuhl, Constitutive modeling of brain tissue: Current perspectives, Appl. Mech. Rev., 68 (2016), 010801.
25.
T. Dutta-Roy, A. Wittek, and K. Miller, Biomechanical modelling of normal pressure hydrocephalus, J. Biomech., 41 (2008), pp. 2263–2271.
26.
E. Comellas, J.-P. Budday, S. Pelteret, G. A. Holzapfel, and P. Steinmann, Modeling the porous and viscous responses of human brain tissue behavior, Comput. Methods Appl. Mech. Engrg., 369 (2020), 113128.
27.
S. Budday, T. C. Ovaert, G. A. Holzapfel, P. Steinmann, and E. Kuhl, Fifty shades of brain: A review on the mechanical testing and modeling of brain tissue, Arch. Comput. Methods Eng., 27 (2020), pp. 1187–1230.
28.
S. Hirsch, J. Braun, and I. Sack, Magnetic Resonance Elastography: Physical Background and Medical Applications, Wiley, New York, 2017.
29.
P. R. Perrinez, A. J. Pattison, F. E. Kennedy, J. B. Weaver, and K. D. Paulsen, Contrast detection in fluid-saturated media with magnetic resonance poroelastography, Med. Phys., 37 (2010), pp. 3518–3526.
30.
L. Tan, M. D. J. McGarry, E. W. Van Houten, M. Ji, L. Solamen, W. Zeng, J. B. Weaver, and K. D. Paulsen, A numerical framework for interstitial fluid pressure imaging in poroelastic MRE, PLoS One., 12 (2017), pp. 1–22.
31.
P. R. Perriñez, F. E. Kennedy, E. E. W. Van Houten, J. B. Weaver, and K. D. Paulsen, Modeling of soft poroelastic tissue in time-harmonic MR elastography, IEEE Trans. Biomed. Eng., 56 (2009), pp. 598–608.
32.
D. Fovargue, S. Kozerke, R. Sinkus, and D. Nordsletten, Robust MR elastography stiffness quantification using a localized divergence free finite element reconstruction, Med. Image Anal., 44 (2018), pp. 126–142.
33.
D. Fovargue, M. Fiorito, A. Capilnasio, D. Nordsletten, J. Lee, and R. Sinkus, Towards noninvasive estimation of tumour pressure by utilising MR elastography and nonlinear biomechanical models: A simulation and phantom study, Sci. Rep., 10 (2020), 5588.
34.
Y. Maday, A. T. Patera, J. D. Penn, and M. Yano, A parameterized-background data-weak approach to variational data assimilation: Formulation, analysis, and application to acoustics, Internat. J. Numer. Methods Engrg., 102 (2014), pp. 933–965.
35.
F. Galarce, J. F. Gerbeau, D. Lombardi, and O. Mula, Fast reconstruction of 3D blood flows from Doppler ultrasound images and reduced models, Comput. Methods Appl. Mech. Engrg., 375 (2021), 113559.
36.
F. Galarce Marin, Inverse Problems in Hemodynamics: Fast Estimation of Blood Flows from Medical Data, Ph.D. thesis, INRIA Paris and Laboratoire Jacques-Louis Lions. Sorbonne Université, 2021, https://gitlab.com/felipe.galarce.m/mad/.
37.
F. Galarce, D. Lombardi, and O. Mula, State estimation with model reduction and shape variability: Application to biomedical problems, SIAM J. Sci. Comput., 44 (2022), pp. B805–B833.
38.
R. Guibert, K. Mcleod, A. Caiazzo, T. Mansi, M. A. Fernández, M. Sermesant, X. Pennec, I. E. Vignon-Clementel, Y. Boudjemline, and J.-F. Gerbeau, Group-wise construction of reduced models for understanding and characterization of pulmonary blood flows from medical images, Med. Image Anal., 18 (2014), pp. 63–82.
39.
E. Burman, M. Nechita, and L. A. Oksanen, Stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: Diffusion-dominated regime, Numer. Math., 144 (2020), pp. 451–477.
40.
L. Lilaj, H. Herthum, T. Meyer, M. Shahryari, G. Bertalan, A. Caiazzo, J. Braun, T. Fischer, S. Hirsch, and I. Sack, Inversion recovery MR elastography of the human brain for improved stiffness quantification near fluid-solid boundaries., Magn. Reson. Med., 86 (2021), pp. 2552–2561.
41.
Y. Maday, A. T. Patera, J. D. Penn, and M. Yano, A parameterized-background data-weak approach to variational data assimilation: Formulation, analysis, and application to acoustics, Internat. J. Numer. Methods Engrg., 102 (2015), pp. 933–965.
42.
F. Galarce, D. Lombardi, and O. Mula, Reconstructing haemodynamics quantities of interest from Doppler ultrasound imaging, Internat. J. Numer. Methods Biomed. Eng., 37 (2021), e3416.
43.
M. Rathinam and L. R. Petzold, A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., 41 (2003), pp. 1893–1925.
44.
P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk, Data assimilation in reduced modeling, SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 1–29.
45.
I. Smillie, I. Sobey, and Z. Molnar, A hydroelastic model of hydrocephalus, J. Fluid Mech., 539 (2005), pp. 417–443.
46.
S. Hirsch, J. Braun, and I. Sack, Magnetic Resonance Elastography: Physical Background and Medical Applications, Wiley, New York, 2017.
47.
T. Bogoslovsky, J. Gill, A. Jeromin, C. Davis, and R. Diaz-Arrastia, Fluid biomarkers of traumatic brain injury and intended context of use, Diagnostics (Basel), 6 (2016), 37.
48.
N. Newmark, A method of computation for structural dynamics, J. Eng. Mech. Div., 85 (1959), pp. 67–94.
49.
C. Rodrigo, F. J. Gaspar, X. Hu, and L. T. Zikatanov, Stability and monotonicity for some discretizations of the Biot’s consolidation model, Comput. Method Appl. Mech. Eng., 298 (2016), pp. 183–204.
50.
S. Balay, S. Abhyankar, M. D. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang, PETSc Web page, http://www.mcs.anl.gov/petsc, 2015.
51.
A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. M. Fennessy, M. Sonka, J. Buatti, S. R. Aylward, J. V. Miller, S. Pieper, and R. Kikinis, 3D slicer as an image computing platform for the quantitative imaging network, Magn. Reson. Imaging, 30 (2012), pp. 1323–1341.
52.
C. Dapogny, C. Dobrzynski, and P. Frey, Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems, J. Comput. Phys., 262 (2014), pp. 358–378.
53.
D. N. Greve and B. Fischl, Accurate and robust brain image alignment using boundary-based registration, NeuroImage, 48 (2009), pp. 63–72.
54.
X. Li, H. von Holst, and S. Kleiven, Influences of brain tissue poroelastic constants onintracranial pressure (ICP) during constant-rate infusion, Comput. Methods Biomech. Biomed. Engrg., 16 (2014), pp. 1330–1343.
55.
L. Heltai and A. Caiazzo, Multiscale modeling of vascularized tissues via nonmatching immersed methods, Internat. J. Numer. Methods Biomed. Engrg., 35 (2019), e3264.
56.
L. Heltai, A. Caiazzo, and L. O. Müller, Multiscale coupling of one-dimensional vascular models and elastic tissues, Ann. Biomed. Eng., 49 (2021), pp. 3243–3254.
57.
M. Shahryari, H. Tzschätzsch, J. Guo, S. R. Marticorena Garcia, G. Böning, U. Fehrenbach, L. Stencel, P. Asbach, B. Hamm, J. A. Käs, J. Braun, T. Denecke, and I. Sack, Tomoelastography distinguishes noninvasively between benign and malignant liver lesions, Cancer Res., 79 (2019), pp. 5704–5710.

Information & Authors

Information

Published In

cover image SIAM Journal on Imaging Sciences
SIAM Journal on Imaging Sciences
Pages: 996 - 1027
ISSN (online): 1936-4954

History

Submitted: 2 May 2022
Accepted: 16 February 2023
Published online: 8 June 2023

Keywords

  1. elastography
  2. data assimilation
  3. state estimation
  4. finite element method
  5. poroelasticity
  6. reduced-order modeling

MSC codes

  1. 35R30
  2. 65N21
  3. 74L15
  4. 92-08

Authors

Affiliations

School of Civil Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
Karsten Tabelow
Weierstrass-Institut für Angewandte Analysis und Stochastik, Leibniz-Institut im Forschungsverbund Berlin e. V., Berlin, Germany.
Jörg Polzehl
Weierstrass-Institut für Angewandte Analysis und Stochastik, Leibniz-Institut im Forschungsverbund Berlin e. V., Berlin, Germany.
Christos Panagiotis Papanikas
Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK.
Ledia Lilaj
Department of Radiology, Charité–Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz. 1, Berlin, Germany.
Ingolf Sack
Department of Radiology, Charité–Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz. 1, Berlin, Germany.
Alfonso Caiazzo
Weierstrass-Institut für Angewandte Analysis und Stochastik, Leibniz-Institut im Forschungsverbund Berlin e. V., Berlin, Germany.

Funding Information

Cyprus Cancer Research Institute: CCRI 2020 FUN 001, CCRI_2021_FA_LE_105
Funding: The work of the authors was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy MATH+: The Berlin Mathematics Research Center EXC-2046/1, project 390685689. The work of the fifth author was supported by the Cyprus Cancer Research Institute through Bridges in Research Excellence CCRI_2020_FUN_001, project “PROTEAS,” grant CCRI_2021_FA_LE_105.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media