Abstract.

An integer matrix \(\mathbf{A}\) is \(\Delta\)-modular if the determinant of each \(\operatorname{rank}(\mathbf{A}) \times \operatorname{rank}(\mathbf{A})\) submatrix of \(\mathbf{A}\) has absolute value at most \(\Delta\). The study of \(\Delta\)-modular matrices appears in the theory of integer programming, where an open conjecture is whether integer programs defined by \(\Delta\)-modular constraint matrices can be solved in polynomial time if \(\Delta\) is considered constant. The conjecture is known to hold true only when \(\Delta \in \{1,2\}\). In light of this conjecture, a natural question is to understand structural properties of \(\Delta\)-modular matrices. We consider the column number question, how many nonzero, pairwise nonparallel columns can a rank-\(r\) \(\Delta\)-modular matrix have? We prove that for each positive integer \(\Delta\) and sufficiently large integer \(r\), every rank-\(r\) \(\Delta\)-modular matrix has at most \(\binom{r+1}{2} + 80\Delta^7 \cdot r\) nonzero, pairwise nonparallel columns, which is tight up to the term \(80\Delta^7\). This is the first upper bound of the form \(\binom{r+1}{2} + f(\Delta )\cdot r\) with \(f\) a polynomial function. Underlying our results is a partial list of matrices that cannot exist in a \(\Delta\)-modular matrix. We believe this partial list may be of independent interest in future studies of \(\Delta\)-modular matrices.

Keywords

  1. delta-modular matrices
  2. matroids
  3. integer programming

MSC codes

  1. 90C10
  2. 05B35

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Anstee, Forbidden configurations, discrepancy and determinants, Eur. J. Combin., 11 (1990), pp. 15–19.
2.
S. Artmann, F. Eisenbrand, C. Glanzer, T. Oertel, S. Vempala, and R. Weismantel, A note on non-degenerate integer programs with small sub-determinants, Oper. Res. Lett., 44 (2016), pp. 635–639, https://doi.org/10.1016/j.orl.2016.07.004.
3.
S. Artmann, R. Weismantel, and R. Zenklusen, A strongly polynomial algorithm for bimodular integer linear programming, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, 2017, pp. 1206–1219.
4.
G. Averkov and M. Schymura, On the maximal number of columns of a \(\Delta\)-modular matrix, in Integer Programming and Combinatorial Optimization, K. Aardal and L. L. Sanità, eds., Springer-Verlag, Berlin, 2022, pp. 29–42, https://doi.org/10.1007/978-3-031-06901-7_3.
5.
S. Fiorini, G. Joret, S. Weltge, and Y. Yuditsky, Integer programs with bounded subdeterminants and two nonzeros per row, in 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), 2022, pp. 13–24, https://doi.org/10.1109/FOCS52979.2021.00011.
6.
J. Geelen and P. Nelson, The densest matroids in minor-closed classes with exponential growth rate, Trans. Amer. Math. Soc., 369 (2014), pp. 6751–6776.
7.
J. Geelen and P. Nelson, A density Hales-Jewett theorem for matroids, J. Combin. Theory Ser. B, 112 (2015), pp. 70–77, https://doi.org/10.1016/j.jctb.2014.11.008, https://www.sciencedirect.com/science/article/pii/S009589561400135X.
8.
J. Geelen and P. Nelson, Matroids denser than a clique, J. Combin. Theory Ser. B, 114 (2015), pp. 51–69, https://doi.org/10.1016/j.jctb.2015.03.005.
9.
J. Geelen, P. Nelson, and Z. Walsh, Excluding a Line from \(\mathbb{C}\)-Representable Matroids, preprint, arXiv:2101.12000, 2021.
10.
J. Geelen and G. Whittle, Cliques in dense GF(q)-representable matroids, J. Combin. Theory Ser. B, 87 (2003), pp. 264–269, https://doi.org/10.1016/S0095-8956(02)00009-6.
11.
C. Glanzer, I. Stallknecht, and R. Weismantel, On the recognition of \(\{ a,b,c \}\)-modular matrices, in Integer Programming and Combinatorial Optimization, M. Singh and D. P. Williamson, eds., Springer-Verlag, Berlin, 2021, pp. 238–251.
12.
C. Glanzer, R. Weismantel, and R. Zenklusen, On the number of distinct rows of a matrix with bounded subdeterminants, SIAM J. Discrete Math., 32 (2018), pp. 1706–1720, https://doi.org/10.1137/17M1125728.
13.
I. Heller, On linear systems with integral valued solutions, Pac. J. Math., 7 (1957), pp. 1351–1364, https://doi.org/pjm/1103043339.
14.
R. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, Plenum Press, New York, 1972, pp. 85–103.
15.
J. Kung, Combinatorial geometries representable over GF(3) and GF(q). I. The number of points, Discrete Comput. Geom., 5 (1990), pp. 83–95, https://doi.org/10.1007/BF02187781.
16.
J. Kung, The long-line graph of a combinatorial geometry. II. Geometries representable over two fields of different characteristics, J. Combin. Theory Ser. B, 50 (1990), pp. 41–53.
17.
J. Lee, Subspaces with well-scaled frames, Linear Algebra Appl., 115 (1989), pp. 21–56.
18.
J. Lee, J. Paat, I. Stallknecht, and L. Xu, Polynomial Upper Bounds on the Number of Differing Columns of \(\Delta\)-Modular Integer Programs, preprint, arXiv:2105.08160, 2021.
19.
H. Lenstra, Integer programming with a fixed number of variables, Math. Oper. Res., 8 (1983), pp. 538–548.
20.
J. D. Loera, R. Hemmecke, and M. Köppe, Algebraic and Geometric Ideas in the Theory of Discrete Optimization, Society for Industrial and Applied Mathematics, Philadelphia, 2012, https://doi.org/10.1137/1.9781611972443, https://epubs.siam.org/doi/abs/10.1137/1.9781611972443.
21.
T. Nakasawa, Zur axiomatik der linearen abhängigkeit, i, Sci. Rep. Tokyo Bunrika Daigaku Sect. A, 2 (1935), pp. 129–149.
22.
T. Nakasawa, Zur axiomatik der linearen abhängigkeit, ii, Sci. Rep. Tokyo Bunrika Daigaku Sect. A, 3 (1936), pp. 77–90.
23.
T. Nakasawa, Zur axiomatik der linearen abhängigkeit, iii, Sci. Rep. Tokyo Bunrika Daigaku Sect. A, 3 (1936), pp. 116–129.
24.
P. Nelson, Projective geometries in exponentially dense matroids. II, J. Combin. Theory Ser. B, 113 (2015), pp. 208–219.
25.
M. Nägele, R. Santiago, and R. Zenklusen, Congruency-constrained TU problems beyond the bimodular case, in Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2022, pp. 2743–2790, https://doi.org/10.1137/1.9781611977073.108, https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.108.
26.
J. Oxley, Matroid Theory, 2nd ed., Oxford University Press, Oxford, 2011, https://doi.org/10.1093/acprof:oso/9780198566946.001.0001.
27.
J. Oxley and Z. Walsh, 2-modular matrices, SIAM J. Discrete Math., 36 (2022), pp. 1231–1248, https://doi.org/10.1137/21M1419131.
28.
J. Paat, M. Schlöter, and R. Weismantel, The integrality number of an integer program, Math. Program., 192 (2022), pp. 271–291, https://doi.org/10.1007/s10107-021-01651-0.
29.
A. Schrijver, Theory of Linear and Integer Programming, John Wiley, New York, 1986.
30.
E. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Oper. Res., 34 (1986), pp. 250–256.
31.
W. T. Tutte, A homotopy theorem for matroids, II, Trans. Amer. Math. Soc., 88 (1958), pp. 161–174, https://doi.org/10.2307/1993244.
32.
S. Veselov and A. Chirkov, Integer programming with bimodular matrix, Discrete Optim., 6 (2009), pp. 220–222.
33.
H. Whitney, On the abstract properties of linear dependence, Amer. J. Math., 57 (1935), pp. 63–87.

Information & Authors

Information

Published In

cover image SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics
Pages: 1 - 18
ISSN (online): 1095-7146

History

Submitted: 8 December 2022
Accepted: 13 August 2023
Published online: 3 January 2024

Keywords

  1. delta-modular matrices
  2. matroids
  3. integer programming

MSC codes

  1. 90C10
  2. 05B35

Authors

Affiliations

Sauder School of Business, University of British Columbia, Vancouver V6T 1Z2, BC, Canada.
Ingo Stallknecht
Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland.
Zach Walsh
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 USA.
Luze Xu
Department of Mathematics, University of California, Davis, Davis, CA 95616 USA.

Funding Information

Funding: The first author was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-2021-02475).

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media