Abstract.

Maximal regularity is a kind of a priori estimate for parabolic-type equations, and it plays an important role in the theory of nonlinear differential equations. The aim of this paper is to investigate the temporally discrete counterpart of maximal regularity for the discontinuous Galerkin (DG) time-stepping method. We will establish such an estimate without logarithmic factor over a quasi-uniform temporal mesh. To show the main result, we introduce the temporally regularized Green’s function and then reduce the discrete maximal regularity to a weighted error estimate for its DG approximation. Our results would be useful for investigation of DG approximation of nonlinear parabolic problems.

Keywords

  1. discontinuous Galerkin time-stepping method
  2. discrete maximal regularity
  3. optimal order error estimate

MSC codes

  1. 65M60
  2. 65M12
  3. 65M15

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. P. Agarwal, C. Cuevas, and C. Lizama, Regularity of Difference Equations on Banach Spaces, Springer, Cham, 2014.
2.
G. Akrivis and B. Li, Linearization of the finite element method for gradient flows by Newton’s method, IMA J. Numer. Anal., 41 (2021), pp. 1411–1440.
3.
G. Akrivis and C. Makridakis, On maximal regularity estimates for discontinuous Galerkin time-discrete methods, SIAM J. Numer. Anal., 60 (2022), pp. 180–194, https://doi.org/10.1137/20M1383781.
4.
A. Ashyralyev and P. E. Sobolevskiĭ, Well-Posedness of Parabolic Difference Equations, Birkhäuser Verlag, Basel, 1994.
5.
S. Blunck, Maximal regularity of discrete and continuous time evolution equations, Studia Math., 146 (2001), pp. 157–176.
6.
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2008.
7.
R. Denk, M. Hieber, and J. Prüss, \(\mathcal{R}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), 788.
8.
K. Eriksson, C. Johnson, and S. Larsson, Adaptive finite element methods for parabolic problems VI: Analytic semigroups, SIAM J. Numer. Anal., 35 (1998), pp. 1315–1325, https://doi.org/10.1137/S0036142996310216.
9.
K. Eriksson, C. Johnson, and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modél. Math. Anal. Numér., 19 (1985), pp. 611–643.
10.
M. Geissert, Discrete maximal \(L_p\) regularity for finite element operators, SIAM J. Numer. Anal., 44 (2006), pp. 677–698, https://doi.org/10.1137/040616553.
11.
M. Geissert, M. Hess, M. Hieber, C. Schwarz, and K. Stavrakidis, Maximal \(L^p\)-\(L^q\)-estimates for the Stokes equation: A short proof of Solonnikov’s theorem, J. Math. Fluid Mech., 12 (2010), pp. 47–60.
12.
T. Kashiwabara and T. Kemmochi, Stability, analyticity, and maximal regularity for parabolic finite element problems on smooth domains, Math. Comp., 89 (2020), pp. 1647–1679.
13.
T. Kemmochi, Discrete maximal regularity for abstract Cauchy problems, Studia Math., 234 (2016), pp. 241–263.
14.
T. Kemmochi and N. Saito, Discrete maximal regularity and the finite element method for parabolic equations, Numer. Math., 138 (2018), pp. 905–937.
15.
B. Kovács, B. Li, and C. Lubich, A-stable time discretizations preserve maximal parabolic regularity, SIAM J. Numer. Anal., 54 (2016), pp. 3600–3624, https://doi.org/10.1137/15M1040918.
16.
P. C. Kunstmann, B. Li, and C. Lubich, Runge-Kutta time discretization of nonlinear parabolic equations studied via discrete maximal parabolic regularity, Found. Comput. Math., 18 (2018), pp. 1109–1130.
17.
D. Leykekhman and B. Vexler, Pointwise best approximation results for Galerkin finite element solutions of parabolic problems, SIAM J. Numer. Anal., 54 (2016), pp. 1365–1384, https://doi.org/10.1137/15M103412X.
18.
D. Leykekhman and B. Vexler, Discrete maximal parabolic regularity for Galerkin finite element methods, Numer. Math., 135 (2017), pp. 923–952.
19.
B. Li, Maximum-norm stability and maximal \(L^p\) regularity of FEMs for parabolic equations with Lipschitz continuous coefficients, Numer. Math., 131 (2015), pp. 489–516.
20.
B. Li, Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic equations in nonconvex polyhedra, Math. Comp., 88 (2019), pp. 1–44.
21.
B. Li, Maximal regularity of multistep fully discrete finite element methods for parabolic equations, IMA J. Numer. Anal., 42 (2022), pp. 1700–1734.
22.
B. Li and W. Sun, Maximal \(L^p\) error analysis of FEMs for nonlinear parabolic equations with nonsmooth coefficients, Int. J. Numer. Anal. Model., 14 (2017), pp. 670–687.
23.
B. Li and W. Sun, Maximal \(L^p\) analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra, Math. Comp., 86 (2017), pp. 1071–1102.
24.
B. Li and W. Sun, Maximal regularity of fully discrete finite element solutions of parabolic equations, SIAM J. Numer. Anal., 55 (2017), pp. 521–542, https://doi.org/10.1137/16M1071912.
25.
A. Lunardi, Interpolation Theory, 3rd ed., Edizioni della Normale, Pisa, 2018.
26.
C. Makridakis and R. H. Nochetto, A posteriori error analysis for higher order dissipative methods for evolution problems, Numer. Math., 104 (2006), pp. 489–514.
27.
A. H. Schatz, I. H. Sloan, and L. B. Wahlbin, Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal., 33 (1996), pp. 505–521, https://doi.org/10.1137/0733027.
28.
V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Sov. Math., 8 (1977), pp. 467–529.
29.
V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer-Verlag, Berlin, 2006.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1638 - 1659
ISSN (online): 1095-7170

History

Submitted: 20 June 2023
Accepted: 11 April 2024
Published online: 22 July 2024

Keywords

  1. discontinuous Galerkin time-stepping method
  2. discrete maximal regularity
  3. optimal order error estimate

MSC codes

  1. 65M60
  2. 65M12
  3. 65M15

Authors

Affiliations

Graduate School of Mathematical Sciences, the University of Tokyo, Tokyo, Japan.
Corresponding author. Graduate School of Engineering, Nagoya University, Nagoya, Japan.

Funding Information

Funding: The first author was supported by JSPS KAKENHI grant 20K14357. The second author was supported by JSPS KAKENHI grants 19K14590 and 21H00990.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media