Abstract.

Functional data are ubiquitous in scientific modeling. For instance, quantities of interest are modeled as functions of time, space, energy, density, etc. Uncertainty quantification methods for computer models with functional response have resulted in tools for emulation, sensitivity analysis, and calibration that are widely used. However, many of these tools do not perform well when the computer model’s parameters control both the amplitude variation of the functional output and its alignment (or phase variation). This paper introduces a framework for Bayesian model calibration when the model responses are misaligned functional data. The approach generates two types of data out of the misaligned functional responses: (1) aligned functions so that the amplitude variation is isolated and (2) warping functions that isolate the phase variation. These two types of data are created for the computer simulation data (both of which may be emulated) and the experimental data. The calibration approach uses both types so that it seeks to match both the amplitude and phase of the experimental data. The framework is careful to respect constraints that arise, especially when modeling phase variation, and is framed in a way that it can be done with readily available calibration software. We demonstrate the techniques on two simulated data examples and on two dynamic material science problems: a strength model calibration using flyer plate experiments and an equation of state model calibration using experiments performed on the Sandia National Laboratories’ Z-machine.

Keywords

  1. amplitude/phase variability
  2. Bayesian model calibration
  3. functional data analysis
  4. material strength calibration

MSC codes

  1. 62P35
  2. 62J02

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Materials

PLEASE NOTE: These supplementary files have not been peer-reviewed.
Index of Supplementary Materials
Title of paper: Elastic Bayesian Model Calibration
Authors: Devin Francom, J. Derek Tucker, Gabriel Huerta, Kurtis Shuler and Daniel Ries
File: Supplement.pdf
Type: PDF
Contents: Additional Example.

References

M. J. Bayarri, J. O. Berger, J. Cafeo, G. Garcia-Donato, F. Liu, J. Palomo, R. J. Parthasarathy, R. Paulo, J. Sacks, and D. Walsh (2007a), Computer model validation with functional output, Ann. Statist., 35, pp. 1874–1906, https://doi.org/10.1214/009053607000000163.
M. J. Bayarri, J. O. Berger, and F. Liu (2009), Modularization in Bayesian analysis, with emphasis on analysis of computer models, Bayesian Anal., 4, pp. 119–150, https://doi.org/10.1214/09-BA404.
M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C. Lin, and J. Tu (2007b), A framework for validation of computer models, Technometrics, 49, pp. 138–154, https://doi.org/10.1198/004017007000000092.
J. M. Boteler and D. P. Dandekar (2006), Dynamic response of two strain-hardened aluminum alloys, J. Appl. Phys., 100, 054902, https://doi.org/10.1063/1.2336492.
J. Brown and L. Hund (2018), Estimating material properties under extreme conditions by using Bayesian model calibration with functional outputs, J. R. Stat. Soc. Ser. C, 67, pp. 1023–1045, https://doi.org/10.1111/rssc.12273.
J. L. Brown, C. S. Alexander, J. R. Asay, T. J. Vogler, D. H. Dolan, and J. L. Belof (2014), Flow strength of tantalum under ramp compression to 250 GPa, J. Appl. Phys., 115, 043530, https://doi.org/10.1063/1.4863463.
J. Brynjarsdóttir and A. O’Hagan (2014), Learning about physical parameters: The importance of model discrepancy, Inverse Problems, 30, 114007, https://doi.org/10.1088/0266-5611/30/11/114007.
W. Cheng, I. L. Dryden, and X. Huang (2016), Bayesian registration of functions and curves, Bayesian Anal., 11, pp. 447–475, https://doi.org/10.1214/15-BA957.
G. Collins, D. Francom, and K. Rumsey (2024), Bayesian projection pursuit regression, Stat. Comput., 34, 29, https://doi.org/10.1007/s11222-023-10334-z.
D. Francom, B. Sanso, V. Bulaevskaya, D. Lucas, and M. Simpson (2019), Inferring atmospheric release characteristics in a large computer experiment using Bayesian adaptive splines, J. Amer. Statist. Assoc., 114, pp. 1450–1465, https://doi.org/10.1080/01621459.2018.1562933.
D. Francom, B. Sanso, and A. Kupresanin (2022), Landmark-warped emulators for models with misaligned functional response, SIAM/ASA J. Uncertain. Quantif., 10, pp. 125–150, https://doi.org/10.1137/20M135279X.
D. Francom, B. Sanso, A. Kupresanin, and G. Johannesson (2018), Sensitivity analysis and emulation for functional data using Bayesian adaptive splines, Stat. Sinica, 28, pp. 791–816, https://doi.org/10.5705/ss.202016.0130.
D. Francom, P. Trubey, et al. (2023), LANL/impala, https://github.com/lanl/impala.
J. Gattiker, N. Klein, E. Lawrence, and G. Hutchings (2023), LANL/SEPIA, https://doi.org/10.5281/zenodo.4048801.
G. T. R. Gray, P. J. Maudlin, L. M. Hull, Q. K. Zuo, and S. Chen (2005), Predicting material strength, damage, and fracture the synergy between experiment and modeling, J. Failure Anal. Prevention, 5, pp. 7–17, https://doi.org/10.1361/15477020523725.
C. W. Greeff, S. P. Rudin, S. D. Crockett, and J. M. Wills (2009), The cold equation of state of tantalum, in AIP Conf. Proc., American Institute of Physics, Melville, NY, pp. 681–684, https://doi.org/10.1063/1.3295231.
M. Gu and J. O. Berger (2016), Parallel partial Gaussian process emulation for computer models with massive output, Ann. Appl. Statist., 10, pp. 1317–1347, https://doi.org/10.1214/16-AOAS934.
M. Gu and L. Wang (2018), Scaled Gaussian stochastic process for computer model calibration and prediction, SIAM/ASA J. Uncertain. Quantif., 6, pp. 1555–1583, https://doi.org/10.1137/17M1159890.
Y. Guan, C. Sampson, J. Derek Tucker, W. Chang, A. Mondal, M. Haran, and D. Sulsky (2019), Computer model calibration based on image warping metrics: An application for sea ice deformation, J. Agric. Biol. Environ. Stat., 24, pp. 444–463, https://doi.org/10.1007/s13253-019-00353-7.
D. Higdon, J. Gattiker, B. Williams, and M. Rightley (2008), Computer model calibration using high-dimensional output, J. Amer. Stat. Assoc., 103, pp. 570–583, https://doi.org/10.1198/016214507000000888.
D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne (2004), Combining field data and computer simulations for calibration and prediction, SIAM J. Sci. Comput., 26, pp. 448–466, https://doi.org/10.1137/S1064827503426693.
L. Horvath and P. Kokoszka (2012), Inference for Functional Data with Applications, Springer, Cham.
G. Hutchings, B. Sansó, J. Gattiker, D. Francom, and D. Pasqualini (2023), Comparing emulation methods for a high-resolution storm surge model, Environmetrics, 34, e2796, https://doi.org/10.1002/env.2796.
G. R. Johnson and W. H. Cook (1983), A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures, in Proceedings of the 7th International Symposium on Ballistics, pp. 541–547.
M. C. Kennedy and A. O’Hagan (2001), Bayesian calibration of computer models, J. R. Stat. Soc. Ser. B Stat. Methodol., 63, pp. 425–464, https://doi.org/10.1111/1467-9868.00294.
W. Kleiber, S. R. Sain, and M. J. Wiltberger (2014), Model calibration via deformation, SIAM/ASA J. Uncertain. Quantif., 2, pp. 545–563, https://doi.org/10.1137/130935367.
R. G. Kraus, J.-P. Davis, C. T. Seagle, D. E. Fratanduono, D. C. Swift, J. L. Brown, and J. H. Eggert (2016), Dynamic compression of copper to over 450 GPa: A high-pressure standard, Phys. Rev. B, 93, 134105, https://doi.org/10.1103/PhysRevB.93.134105.
R. W. Lemke, M. D. Knudson, D. E. Bliss, K. Cochrane, J. Davis, A. A. Giunta, H. C. Harjes, and S. A. Slutz (2005), Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments, J. Appl. Phys., 98, 073530, https://doi.org/10.1063/1.2084316.
Y. Lu, R. Herbei, and S. Kurtek (2017), Bayesian registration of functions with a Gaussian process prior, J. Comput. Graph. Stat., 26, pp. 894–904, https://doi.org/10.1080/10618600.2017.1336444.
J. S. Marron, J. O. Ramsay, L. M. Sangalli, and A. Srivastava (2015), Functional data analysis of amplitude and phase variation, Statist. Sci., 30, pp. 468–484, https://doi.org/10.1214/15-STS524.
M. Plummer (2015), Cuts in Bayesian graphical models, Stat. Comput., 25, pp. 37–43, https://doi.org/10.1007/s11222-014-9503-z.
J. O. Ramsay and X. Li (1998), Curve registration, J. R. Stat. Soc. Ser. B, 60, pp. 351–363, https://doi.org/10.1111/1467-9868.00129.
J. O. Ramsay and B. W. Silverman (2005), Functional Data Analysis, Springer, Cham.
J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989), Design and analysis of computer experiments, Statist. Sci., 4, pp. 409–423, https://doi.org/10.1214/ss/1177012413.
M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDanie, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, J. R. Woodworth, C. W. Mendel, K. R. Prestwich, R. W. Shoup, D. L. Johnson, J. P. Corley, K. C. Hodge, T. C. Wagoner, and P. E. Wakeland (2007), An overview of pulse compression and power flow in the upgraded Z pulsed power driver, in 2007 16th IEEE International Pulsed Power Conference Vol. 2, IEEE, pp. 979–984, https://doi.org/10.1109/PPPS.2007.4652354.
P. Soderlind and J. A. Moriarty (1998), First-principles theory of Ta up to 10 Mbar pressure: Structural and mechanical properties, Phys. Rev. B, 57, pp. 10340–10350, https://doi.org/10.1103/PhysRevB.57.10340.
A. Srivastava and E. Klassen (2016), Functional and Shape Data Analysis, Springer, Cham.
A. Srivastava, W. Wu, S. Kurtek, E. Klassen, and J. S. Marron (2011), Registration of Functional Data Using Fisher–Rao Metric, preprint, arXiv:1103.3817v2 [math.ST], http://arxiv.org/abs/1103.3817v2.
J. D. Tucker, W. Wu, and A. Srivastava (2013), Generative models for functional data using phase and amplitude separation, Comput. Stat. Data Anal., 61, pp. 50–66, https://doi.org/10.1016/j.csda.2012.12.001.
P. Vinet, J. Rose, J. Ferrante, and J. Smith (1989), Universal features of the equation of state of solids, J. Phys. Condens. Matt., 1, pp. 1941–1963, https://doi.org/10.1088/0953-8984/1/11/002.
D. J. Walters, A. Biswas, E. C. Lawrence, D. C. Francom, D. J. Luscher, D. A. Fredenburg, K. R. Moran, C. M. Sweeney, R. L. Sandberg, J. P. Ahrens, and C. A. Bolme (2018), Bayesian calibration of strength parameters using hydrocode simulations of symmetric impact shock experiments of Al-5083, J. Appl. Phys., 124, 205105, https://doi.org/10.1063/1.5051442.
B. Williams, D. Higdon, J. Gattiker, L. Moore, M. McKay, and S. Keller-McNulty (2006), Combining experimental data and computer simulations, with an application to flyer plate experiments, Bayesian Anal., 1, pp. 765–792, https://doi.org/10.1214/06-BA125.
W. Wu and A. Srivastava (2011), An information-geometric framework for statistical inferences in the neural spike train space, J. Comput. Neurosci., 31, pp. 725–748, https://doi.org/10.1007/s10827-011-0336-x.

Information & Authors

Information

Published In

cover image SIAM/ASA Journal on Uncertainty Quantification
SIAM/ASA Journal on Uncertainty Quantification
Pages: 195 - 227
ISSN (online): 2166-2525

History

Submitted: 5 March 2024
Accepted: 20 September 2024
Published online: 18 February 2025

Keywords

  1. amplitude/phase variability
  2. Bayesian model calibration
  3. functional data analysis
  4. material strength calibration

MSC codes

  1. 62P35
  2. 62J02

Authors

Affiliations

Devin Francom Contact the author
Los Alamos National Laboratory, Los Alamos, NM 87545 USA.
Sandia National Laboratories, Albuquerque, NM 87015 USA.
Gabriel Huerta
Sandia National Laboratories, Albuquerque, NM 87015 USA.
Kurtis Shuler
Sandia National Laboratories, Albuquerque, NM 87015 USA.
Daniel Ries
Sandia National Laboratories, Albuquerque, NM 87015 USA.

Funding Information

Funding: This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. This work was supported by the NA-22 program, the Advanced Simulation and Computing program, and Laboratory Directed Research and Development program at Los Alamos National Laboratory and Sandia National Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Full Text

View Full Text

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media