Abstract

The Wigner–Poisson equation describes the quantum-mechanical motion of electrons in a self-consistent electrostatic field. The equation consists of a transport term and a non-linear pseudodifferential operator. In this paper we analyze an operator splitting method for the linear Wigner equation and the coupled Wigner–Poisson problem. For this semidiscretization in time, consistency and nonlinear stability are established in an $L^2 $-framework. We present a numerical example to illustrate the method.

MSC codes

  1. 65J15
  2. 81530
  3. 65M99

Keywords

  1. operator splitting methods
  2. Wigner functions

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975xviii+268
2.
A. Arnold, On absorbing boundary conditions for quantum transport equations, Math. Mod. Numer. Anal., 28 (1994), 853–872
3.
Anton Arnold, Peter A. Markowich, The periodic quantum Liouville-Poisson problem, Boll. Un. Mat. Ital. B (7), 4 (1990), 449–484
4.
Anton Arnold, Francis Nier, Numerical analysis of the deterministic particle method applied to the Wigner equation, Math. Comp., 58 (1992), 645–669
5.
Anton Arnold, Christian Ringhofer, Operator splitting methods applied to spectral discretizations of quantum transport equations, SIAM J. Numer. Anal., 32 (1995), 1876–1894
6.
Franco Brezzi, Peter A. Markowich, The three-dimensional Wigner-Poisson problem: existence, uniqueness and approximation, Math. Methods Appl. Sci., 14 (1991), 35–61
7.
C. Z. Cheng, G. Knorr, The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22 (1976), 330–351
8.
A. J. Chorin, Thomas J. Hughes, M. F. McCracken, J. E. Marsden, Product formulas and numerical algorithms, Comm. Pure Appl. Math., 31 (1978), 205–256
9.
W. R. Frensley, Wigner function model of a resonant-tunneling semiconductor device, Phys. Rev. B, 36 (1987), 1570–1580
10.
Reinhard Illner, H. Lange, Paul F. Zweifel, Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner-Poisson and Schrödinger-Poisson systems, Math. Methods Appl. Sci., 17 (1994), 349–376
11.
N. Kluksdahl, A. M. Kriman, D. K. Ferry, C. Ringhofer, Selfconsistent study of the resonant tunneling diode, Phys. Rev. B, 39 (1989), 7720–7735
12.
Peter A. Markowich, On the equivalence of the Schrödinger and the quantum Liouville equations, Math. Methods Appl. Sci., 11 (1989), 459–469
13.
P. A. Markowich, C. Ringhofer, An analysis of the quantum Liouville equation, Z. Angew. Math. Mech., 69 (1989), 121–127
14.
P. A. Markowich, C. Ringhofer, C. Schmeiser, Semiconductor equations, Springer-Verlag, Vienna, 1990x+248
15.
F. Nier, Ph.D. Thesis, Application de la méthode particulaire à l'équation de Wigner–mise en oeuvre numerique, Ecole Polytechnique, Palaiseau, France, 1991
16.
A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983viii+279, Berlin
17.
V. Ravaioli, M. A. Kriman, W. Plötz, N. Kluksdahl, D. K. Ferry, Investigation of ballistic transport through resonant-tunneling quantum wells using Wigner function approach, Phys. B, 134 (1985), 36–40
18.
Michael Reed, Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978xv+396, San Francisco, London
19.
Christian Ringhofer, A spectral method for the numerical simulation of quantum tunneling phenomena, SIAM J. Numer. Anal., 27 (1990), 32–50
20.
Christian Ringhofer, On the convergence of spectral methods for the Wigner-Poisson problem, Math. Models Methods Appl. Sci., 2 (1992), 91–111
21.
Christian Ringhofer, David Ferry, Norman Kluksdahl, Absorbing boundary conditions for the simulation of quantum transport phenomena, Transport Theory Statist. Phys., 18 (1989), 331–346
22.
I. Segal, Nonlinear semi-groups, Ann. of Math., 78 (1963), 339–364
23.
Gilbert Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (1968), 506–517
24.
N. D. Suh, M. R. Feix, P. Bertrand, Numerical simulation of the quantum Liouville–Poisson system, J. Comput. Phys., 94 (1991), 403–418
25.
V. I. Tatarskii, The Wigner representation of quantum mechanics, Sov. Phys. Usp., 26 (1983), 311–327
26.
Fred B. Weissler, Construction of non-linear semi-groups using product formulas, Israel J. Math., 29 (1978), 265–275
27.
E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749–759

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1622 - 1643
ISSN (online): 1095-7170

History

Submitted: 14 October 1992
Accepted: 20 October 1994
Published online: 12 July 2006

MSC codes

  1. 65J15
  2. 81530
  3. 65M99

Keywords

  1. operator splitting methods
  2. Wigner functions

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media