Abstract

Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

MSC codes

  1. 05C75
  2. 05C90
  3. 94C15

Keywords

  1. networks
  2. graph theory
  3. complex systems
  4. computer networks
  5. social networks
  6. random graphs
  7. percolation theory

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
G. Abramson and M. Kuperman, Social games in a social network, Phys. Rev. E, 63 (2001), art. no. 030901.
2.
L. A. Adamic, The small world web, in Research and Advanced Technology for Digital Libraries, Lecture Notes in Comput. Sci. 1696, S. Abiteboul and A.‐M. Vercoustre, eds., Springer‐Verlag, New York, 1999, pp. 443–452.
3.
L. A. Adamic and E. Adar, Friends and neighbors on the Web, Social Networks (to appear).
4.
L. A. Adamic and B. A. Huberman, Power‐law distribution of the world wide web, Science, 287 (2000), p. 2115a.
5.
L. A. Adamic, R. M. Lukose, and B. A. Huberman, Local search in unstructured networks, in Handbook of Graphs and Networks, S. Bornholdt and H. G. Schuster, eds., Wiley‐VCH, Berlin, 2003.
6.
L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, Search in power‐law networks, Phys. Rev. E, 64 (2001), art. no. 046135.
7.
Ravindra Ahuja, Thomas Magnanti, James Orlin, Network flows, Prentice Hall Inc., 1993xvi+846, Theory, algorithms, and applications
8.
W. Aiello, F. Chung, and L. Lu, A random graph model for massive graphs, in Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, Association of Computing Machinery, New York, 2000, pp. 171–180.
9.
W. Aiello, F. Chung, and L. Lu, Random evolution of massive graphs, in Handbook of Massive Data Sets, J. Abello, P. M. Pardalos, and M. G. C. Resende, eds., Kluwer Academic, Dordrecht, 2002, pp. 97–122.
10.
R. Alberich, J. Miro‐Julia, and F. Rossello, Marvel Universe Looks Almost Like a Real Social Network, Preprint 0202174 (2002); available from http://arxiv.org/abs/cond‐mat/.
11.
R. Albert and A.‐L. Barabási, Dynamics of complex systems: Scaling laws for the period of Boolean networks, Phys. Rev. Lett., 84 (2000), pp. 5660–5663.
12.
R. Albert and A.‐L. Barabási, Topology of evolving networks: Local events and universality, Phys. Rev. Lett., 85 (2000), pp. 5234–5237.
13.
Réka Albert, Albert‐László Barabási, Statistical mechanics of complex networks, Rev. Modern Phys., 74 (2002), 47–97
14.
R. Albert, H. Jeong, and A.‐L. Barabási, Diameter of the world‐wide web, Nature, 401 (1999), pp. 130–131.
15.
R. Albert, H. Jeong, and A.‐L. Barabási, Attack and error tolerance of complex networks, Nature, 406 (2000), pp. 378–382.
16.
M. Aldana, Dynamics of Boolean Networks with Scale‐Free Topology, Preprint 0209571 (2002); available from http://arxiv.org/abs/cond‐mat/.
17.
David Aldous, Boris Pittel, On a random graph with immigrating vertices: emergence of the giant component, Random Structures Algorithms, 17 (2000), 79–102
18.
A. Aleksiejuk, J. A. Hołyst, and D. Stauffer, Ferromagnetic phase transition in Barabási–Albert networks, Phys. A, 310 (2002), pp. 260–266.
19.
E. Almaas, R. V. Kulkarni, and D. Stroud, Characterizing the structure of small‐world networks, Phys. Rev. Lett., 88 (2002), art. no. 098101.
20.
L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, Classes of small‐world networks, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 11149–11152.
21.
L. Ancel Meyers, M. E. J. Newman, M. Martin, and S. Schrag, Applying network theory to epidemics: Control measures for outbreaks of Mycoplasma pneumoniae, Emerging Infectious Diseases, 9 (2001), pp. 204–210.
22.
C. Anderson, S. Wasserman, and B. Crouch, A p* primer: Logit models for social networks, Social Networks, 21 (1999), pp. 37–66.
23.
R. M. Anderson and R. M. May, Infectious Diseases of Humans, Oxford University Press, Oxford, 1991.
24.
Håkan Andersson, Epidemic models and social networks, Math. Sci., 24 (1999), 128–147
25.
A. Arenas, A. Cabrales, A. Díaz‐Guilera, R. Guimerà, and F. Vega‐Redondo, Search and congestion in complex networks, in Proceedings of the 18th Sitges Conference on Statistical Mechanics, R. Pastor‐Satorras and J. Rubi, eds., Lecture Notes in Phys., Springer‐Verlag, Berlin, 2003.
26.
Norman Bailey, The mathematical theory of infectious diseases and its applications, Hafner Press [Macmillan Publishing Co., Inc.] New York, 1975xvi+413
27.
D. Baird and R. E. Ulanowicz, The seasonal dynamics of the Chesapeake Bay ecosystem, Ecological Monographs, 59 (1989), pp. 329–364.
28.
Frank Ball, Denis Mollison, Gianpaolo Scalia‐Tomba, Epidemics with two levels of mixing, Ann. Appl. Probab., 7 (1997), 46–89
29.
J. R. Banavar, A. Maritan, and A. Rinaldo, Size and form in efficient transportation networks, Nature, 399 (1999), pp. 130–132.
30.
D. L. Banks and K. M. Carley, Models for network evolution, J. Math. Sociology, 21 (1996), pp. 173–196.
31.
A.‐L. Barabási, Linked: The New Science of Networks, Perseus, Cambridge, MA, 2002.
32.
A.‐L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), pp. 509–512.
33.
A.‐L. Barabási, R. Albert, and H. Jeong, Mean‐field theory for scale‐free random networks, Phys. A, 272 (1999), pp. 173–187.
34.
A.‐L. Barabási, R. Albert, and H. Jeong, Scale‐free characteristics of random networks: The topology of the World Wide Web, Phys. A, 281 (2000), pp. 69–77.
35.
A.‐L. Barabási, R. Albert, H. Jeong, and G. Bianconi, Power‐law distribution of the World Wide Web, Science, 287 (2000), p. 2115a.
36.
A. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, T. Vicsek, Evolution of the social network of scientific collaborations, Phys. A, 311 (2002), 590–614
37.
M. Barahona and L. M. Pecora, Synchronization in small‐world systems, Phys. Rev. Lett., 89 (2002), art. no. 054101.
38.
A. Barbour, Gesine Reinert, Small worlds, Random Structures Algorithms, 19 (2001), 54–74
39.
A. Barrat, Comment on “Small‐World Networks: Evidence for Crossover Picture,” Preprint 9903323 (1999);
available from http://arxiv.org/abs/cond‐mat/.
40.
A. Barrat and M. Weigt, On the properties of small‐world networks, Eur. Phys. J. B, 13 (2000), pp. 547–560.
41.
M. Barthélémy and L. A. N. Amaral, Erratum: Small‐worldnetworks: Evidence for a crossover picture, Phys. Rev. Lett., 82 (1999), p. 5180.
42.
M. Barthélémy and L. A. N. Amaral, Small‐world networks: Evidence for a crossover picture, Phys. Rev. Lett., 82 (1999), pp. 3180–3183.
43.
Vladimir Batagelj, Andrej Mrvar, Some analyses of Erdo˝s collaboration graph, Social Networks, 22 (2000), 173–186
44.
M. Bauer and D. Bernard, A Simple Asymmetric Evolving Random Network, Preprint 0203232 (2002);
available from http://arxiv.org/abs/cond‐mat/.
45.
P. S. Bearman, J. Moody, and K. Stovel, Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks, preprint, Department of Sociology, Columbia University, New York, 2002.
46.
A. Békéssy, P. Békéssy, J. Komlós, Asymptotic enumeration of regular matrices, Studia Sci. Math. Hungar., 7 (1972), 343–353
47.
Edward Bender, E. Canfield, The asymptotic number of labeled graphs with given degree sequences, J. Combinatorial Theory Ser. A, 24 (1978), 296–307
48.
J. Berg and M. Lässig, Correlated random networks, Phys. Rev. Lett., 89 (2002), art. no. 228701.
49.
J. Berg, M. Lässig, and A. Wagner, Evolution Dynamics of Protein Networks, Preprint 0207711 (2002);
available from http://arxiv.org/abs/cond‐mat/.
50.
H. R. Bernard, P. D. Killworth, M. J. Evans, C. McCarty, and G. A. Shelley, Studying social relations cross‐culturally, Ethnology, 2 (1988), pp. 155–179.
51.
G. Bianconi, Mean Field Solution of the Ising Model on a Barabási–Albert Network, Preprint 0204455 (2002);
available from http://arxiv.org/abs/cond‐mat/.
52.
G. Bianconi and A.‐L. Barabási, Bose–Einstein condensation in complex networks, Phys. Rev. Lett., 86 (2001), pp. 5632–5635.
53.
G. Bianconi and A.‐L. Barabási, Competition and multiscaling in evolving networks, Europhys. Lett., 54 (2001), pp. 436–442.
54.
G. Bianconi and A. Capocci, Number of loops of size h in growing scale‐free networks, Phys. Rev. Lett., 90 (2003), art. no. 078701.
55.
S. Bilke and C. Peterson, Topological properties of citation and metabolic networks, Phys. Rev. E, 64 (2001), art. no. 036106.
56.
P. Blanchard, C.‐H. Chang, and T. Krüger, Epidemic Thresholds on Scale‐Free Graphs: The Interplay between Exponent and Preferential Choice, Preprint 0207319 (2002);
available from http://arxiv.org/abs/cond‐mat/.
57.
M. Boguñá and R. Pastor‐Satorras, Epidemic spreading in correlated complex networks, Phys. Rev. E, 66 (2002), art. no. 047104.
58.
M. Boguñá, R. Pastor‐Satorras, and A. Vespignani, Absence of Epidemic Threshold in Scale‐Free Networks with Connectivity Correlations, Preprint 0208163 (2002);
available from http://arxiv.org/abs/cond‐mat/.
59.
M. Boguñá, R. Pastor‐Satorras, and A. Vespignani, Epidemic spreading in complex networks with degree correlations, in Proceedings of the 18th Sitges Conference on Statistical Mechanics, R. Pastor‐Satorras and J. Rubi, eds., Lecture Notes in Phys., Springer‐Verlag, Berlin, 2003.
60.
Béla Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European J. Combin., 1 (1980), 311–316
61.
Béla Bollobás, The diameter of random graphs, Trans. Amer. Math. Soc., 267 (1981), 41–52
62.
Béla Bollobás, Modern graph theory, Graduate Texts in Mathematics, Vol. 184, Springer‐Verlag, 1998xiv+394
63.
Béla Bollobás, Random graphs, Cambridge Studies in Advanced Mathematics, Vol. 73, Cambridge University Press, 2001xviii+498
64.
B. Bollobás and O. Riordan, The Diameter of a Scale‐Free Random Graph, preprint, Department of Mathematical Sciences, University of Memphis, 2002.
65.
Béla Bollobás, Oliver Riordan, Joel Spencer, Gábor Tusnády, The degree sequence of a scale‐free random graph process, Random Structures Algorithms, 18 (2001), 279–290
66.
P. F. Bonacich, A technique for analyzing overlapping memberships, in Sociological Methodology, H. Costner, ed., Jossey‐Bass, San Francisco, CA, 1972.
67.
P. F. Bonacich, Power and centrality: A family of measures, Amer. J. Sociol., 92 (1987), pp. 1170–1182.
68.
M. Bordens and I. Gómez, Collaboration networks in science, in The Web of Knowledge: A Festschrift in Honor of Eugene Garfield, B. Cronin and H. B. Atkins, eds., Information Today, Medford, NJ, 2000.
69.
S. Bornholdt and H. Ebel, World Wide Web scaling exponent from Simon’s 1955 model, Phys. Rev. E, 64 (2001), art. no. 035104.
70.
S. Bornholdt and H. G. Schuster, eds., Handbook of Graphs and Networks, Wiley‐VCH, Berlin, 2003.
71.
R. L. Breiger, S. A. Boorman, and P. Arabie, An algorithm for clustering relations data with applications to social network analysis and comparison with multidimensional scaling, J. Math. Psych., 12 (1975), pp. 328–383.
72.
S. Brin and L. Page, The anatomy of a large‐scale hypertextual Web search engine, Computer Networks, 30 (1998), pp. 107–117.
73.
S. Broadbent, J. Hammersley, Percolation processes. I. Crystals and mazes, Proc. Cambridge Philos. Soc., 53 (1957), 629–641
74.
A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, Graph structure in the web, Computer Networks, 33 (2000), pp. 309–320.
75.
A. Broida and K. C. Claffy, Internet topology: Connectivity of IP graphs, in Scalability and Traffic Control in IP Networks, S. Fahmy and K. Park, eds., Proc. SPIE 4526, International Society for Optical Engineering, Bellingham, WA, 2001, pp. 172–187.
76.
M. Buchanan, Nexus: Small Worlds and the Groundbreaking Science of Networks, Norton, New York, 2002.
77.
Z. Burda, J. D. Correia, and A. Krzywicki, Statistical ensemble of scale‐free random graphs, Phys. Rev. E, 64 (2001), art. no. 046118.
78.
G. Caldarelli, A. Capocci, P. De Los Rios, and M. A. Muñoz, Scale‐free networks from varying vertex intrinsic fitness, Phys. Rev. Lett., 89 (2002), art. no. 258702.
79.
G. Caldarelli, R. Pastor‐Satorras, and A. Vespignani, Cycles Structure and Local Ordering in Complex Networks, Preprint 0212026 (2002);
available from http://arxiv.org/abs/cond‐mat/.
80.
D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman, and S. H. Strogatz, Are randomly grown graphs really random?, Phys. Rev. E, 64 (2001), art. no. 041902.
81.
D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Network robustness and fragility: Percolation on random graphs, Phys. Rev. Lett., 85 (2000), pp. 5468–5471.
82.
J. Camacho, R. Guimerà, and L. A. N. Amaral, Robust patterns in food web structure, Phys. Rev. Lett., 88 (2002), art. no. 228102.
83.
A. Capocci, G. Caldarelli, and P. De Los Rios, Quantitative Description and Modeling of Real Networks, Preprint 0206336 (2002);
available from http://arxiv.org/abs/cond‐mat/.
84.
C. Castellano, D. Vilone, and A. Vespignani, Incomplete Ordering of the Voter Model on Small‐World Networks, Preprint 0210465 (2002);
available from http://arxiv.org/abs/cond‐mat/.
85.
J. A. Catania, T. J. Coates, S. Kegels, and M. T. Fullilove, The population‐based AMEN (AIDS in Multi‐Ethnic Neighborhoods) study, Amer. J. Public Health, 82 (1992), pp. 284–287.
86.
Q. Chen, H. Chang, R. Govindan, S. Jamin, S. J. Shenker, and W. Willinger, The origin of power laws in Internet topologies revisited, in Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE Computer Society, Los Alamitos, CA, 2002.
87.
G. Chowell, J. M. Hyman, and S. Eubank, Analysis of a Real World Network: The City of Portland, Technical Report BU‐1604‐M, Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 2002.
88.
Fan Chung, Linyuan Lu, The average distances in random graphs with given expected degrees, Proc. Natl. Acad. Sci. USA, 99 (2002), 15879–15882
89.
Fan Chung, Linyuan Lu, Connected components in random graphs with given expected degree sequences, Ann. Comb., 6 (2002), 125–145
90.
F. Chung, L. Lu, T. G. Dewey, and D. J. Galas, Duplication models for biological networks, J. Comput. Biology (to appear).
91.
Joel Cohen, Frédéric Briand, Charles Newman, Community food webs, Biomathematics, Vol. 20, Springer‐Verlag, 1990xii+308, Data and theory; With a contribution by Zbigniew J. Palka
92.
R. Cohen, D. ben‐Avraham, and S. Havlin, Efficient Immunization of Populations and Computers, Preprint 0207387 (2002);
available from http://arxiv.org/abs/cond‐mat/.
93.
R. Cohen, K. Erez, D. ben‐Avraham, and S. Havlin, Resilience of the Internet to random breakdowns, Phys. Rev. Lett., 85 (2000), pp. 4626–4628.
94.
R. Cohen, K. Erez, D. ben‐Avraham, and S. Havlin, Breakdown of the Internet under intentional attack, Phys. Rev. Lett., 86 (2001), pp. 3682–3685.
95.
R. Cohen and S. Havlin, Scale‐free networks are ultrasmall, Phys. Rev. Lett., 90 (2003), art. no. 058701.
96.
R. C. Connor, M. R. Heithaus, and L. M. Barre, Superalliance of bottlenose dolphins, Nature, 397 (1999), pp. 571–572.
97.
S. Coppersmith, Leo Kadanoff, Zhitong Zhang, Reversible Boolean networks. I. Distribution of cycle lengths, Phys. D, 149 (2001), 11–29
98.
S. Coppersmith, Leo Kadanoff, Zhitong Zhang, Reversible Boolean networks. II. Phase transitions, oscillations, and local structures, Phys. D, 157 (2001), 54–74
99.
S. R. Corman, T. Kuhn, R. D. Mcphee, and K. J. Dooley, Studying complex discursive systems: Centering resonance analysis of organizational communication, Human Communication Res., 28 (2002), pp. 157–206.
100.
S. Coulumb and M. Bauer, Asymmetric Evolving Random Networks, Preprint 0212371 (2002);
available from http://arxiv.org/abs/cond‐mat/.
101.
D. Crane, Invisible Colleges: Diffusion of Knowledge in Scientific Communities, University of Chicago Press, Chicago, 1972.
102.
J. Davidsen, H. Ebel, and S. Bornholdt, Emergence of a small world from local interactions: Modeling acquaintance networks, Phys. Rev. Lett., 88 (2002), art. no. 128701.
103.
A. Davis, B. B. Gardner, and M. R. Gardner, Deep South, University of Chicago Press, Chicago, 1941.
104.
G. F. Davis and H. R. Greve, Corporate elite networks and governance changes in the 1980s, Amer. J. Sociol., 103 (1997), pp. 1–37.
105.
G. F. Davis, M. Yoo, and W. E. Baker, The Small World of the Corporate Elite, preprint, University of Michigan Business School, Ann Arbor, MI, 2001.
106.
L. de Arcangelis and H. J. Herrmann, Self‐organized criticality on small world networks, Phys. A, 308 (2002), pp. 545–549.
107.
Rodrigo De Castro, Jerrold Grossman, Famous trails to Paul Erdo˝s, Math. Intelligencer, 21 (1999), 51–63, With a sidebar by Paul M. B. Vitanyi
108.
M. H. de Groot, Reaching a consensus, J. Amer. Statist. Assoc., 69 (1974), pp. 118–121.
109.
M. A. de Menezes, C. Moukarzel, and T. J. P. Penna, First‐order transition in small‐world networks, Europhys. Lett., 50 (2000), pp. 574–579.
110.
P. S. Dodds, R. Muhamad, and D. J. Watts, An Experiment Study of Social Search and the Small World Problem, preprint, Department of Sociology, Columbia University, New York, 2002.
111.
P. S. Dodds and D. H. Rothman, Geometry of river networks, Phys. Rev. E, 63 (2001), art. no. 016115, 016116, 016117.
112.
S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Ising model on networks with an arbitrary distribution of connections, Phys. Rev. E, 66 (2002), art. no. 016104.
113.
S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Pseudofractal scale‐free web, Phys. Rev. E, 65 (2002), art. no. 066122.
114.
S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks with aging of sites, Phys. Rev. E, 62 (2000), pp. 1842–1845.
115.
S. N. Dorogovtsev and J. F. F. Mendes, Exactly solvable small‐world network, Europhys. Lett., 50 (2000), pp. 1–7.
116.
S. N. Dorogovtsev and J. F. F. Mendes, Scaling behaviour of developing and decaying networks, Europhys. Lett., 52 (2000), pp. 33–39.
117.
S. N. Dorogovtsev and J. F. F. Mendes, Comment on “Breakdown of the Internet under intentional attack,” Phys. Rev. Lett., 87 (2001), art. no. 219801.
118.
S. N. Dorogovtsev and J. F. F. Mendes, Effect of the accelerating growth of communications networks on their structure, Phys. Rev. E, 63 (2001), art. no. 025101.
119.
S. N. Dorogovtsev and J. F. F. Mendes, Language as an evolving word web, Proc. Roy. Soc. London Ser. B, 268 (2001), pp. 2603–2606.
120.
S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks, Adv. in Phys., 51 (2002), pp. 1079–1187.
121.
S. N. Dorogovtsev and J. F. F. Mendes, Accelerated growth of networks, in Handbook of Graphs and Networks, S. Bornholdt and H. G. Schuster, eds., Wiley‐VCH, Berlin, 2003, pp. 318–341.
122.
S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford University Press, Oxford, 2003.
123.
S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Structure of growing networks with preferential linking, Phys. Rev. Lett., 85 (2000), pp. 4633–4636.
124.
S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Anomalous percolation properties of growing networks, Phys. Rev. E, 64 (2001), art. no. 066110.
125.
S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Giant strongly connected component of directed networks, Phys. Rev. E, 64 (2001), art. no. 025101.
126.
S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Size‐dependent degree distribution of a scale‐free growing network, Phys. Rev. E, 63 (2001), art. no. 062101.
127.
S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Metric Structure of Random Networks, Preprint 0210085 (2002);
available from http://arxiv.org/abs/cond‐mat/.
128.
S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Principles of Statistical Mechanics of Random Networks, Preprint 0204111 (2002);
available from http://arxiv.org/abs/cond‐mat/.
129.
S. N. Dorogovtsev and A. N. Samukhin, Mesoscopics and Fluctuations in Networks, Preprint 0211518 (2002);
available from http://arxiv.org/abs/cond‐mat/.
130.
J. P. K. Doye, Network topology of a potential energy landscape: A static scale‐free network, Phys. Rev. Lett., 88 (2002), art. no. 238701.
131.
Dingzhu Du, Jun Gu, Panos Pardalos, Satisfiability problem: theory and applications, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 35, American Mathematical Society, 1997xvi+724, Papers from the DIMACS Workshop held at Rutgers University, Piscataway, NJ, March 11–13, 1996
132.
J. A. Dunne, R. J. Williams, and N. D. Martinez, Food‐web structure and network theory: The role of connectance and size, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 12917–12922.
133.
J. A. Dunne, R. J. Williams, and N. D. Martinez, Network structure and biodiversity loss in food webs: Robustness increases with connectance, Ecology Lett., 5 (2002), pp. 558–567.
134.
R. T. Durrett, Rigorous Results for the Callaway–Hopcroft–Kleinberg–Newman–Strogatz Model, preprint, Department of Mathematics, Cornell University, Ithaca, NY, 2003.
135.
H. Ebel and S. Bornholdt, Co‐evolutionary games on networks, Phys. Rev. E, 66 (2002), art. no. 056118.
136.
H. Ebel, L.‐I. Mielsch, and S. Bornholdt, Scale‐free topology of e‐mail networks, Phys. Rev. E, 66 (2002), art. no. 035103.
137.
Jean‐Pierre Eckmann, Elisha Moses, Curvature of co‐links uncovers hidden thematic layers in the World Wide Web, Proc. Natl. Acad. Sci. USA, 99 (2002), 5825–5829
138.
L. Egghe and R. Rousseau, Introduction to Informetrics, Elsevier, Amsterdam, 1990.
139.
V. M. Eguiluz and K. Klemm, Epidemic threshold in structured scale‐free networks, Phys. Rev. Lett., 89 (2002), art. no. 108701.
140.
M. Eigen and P. Schuster, The Hypercycle: A Principle of Natural Self‐Organization, Springer‐Verlag, New York, 1979.
141.
P. Erdös, A. Rényi, On random graphs. I, Publ. Math. Debrecen, 6 (1959), 290–297
142.
P. Erdös, A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl., 5 (1960), 17–61
143.
P. Erdös, A. Rényi, On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hungar., 12 (1961), 261–267
144.
Güler Ergün, Human sexual contact network as a bipartite graph, Phys. A, 308 (2002), 483–488
145.
G. Ergün and G. J. Rodgers, Growing random networks with fitness, Phys. A, 303 (2002), pp. 261–272.
146.
K. A. Eriksen, I. Simonsen, S. Maslov, and K. Sneppen, Modularity and Extreme Edges of the Internet, Preprint 0212001 (2002);
available from http://arxiv.org/abs/cond‐mat/.
147.
Brian Everitt, Cluster analysis, Halsted Press [John Wiley & Sons], New York, 1974vi+122
148.
M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power‐law relationships of the internet topology, Computer Communications Rev., 29 (1999), pp. 251–262.
149.
T. J. Fararo and M. Sunshine, A Study of a Biased Friendship Network, Syracuse University Press, Syracuse, NY, 1964.
150.
I. J. Farkas, I. Derényi, A.‐L. Barabási, and T. Vicsek, Spectra of “real‐world” graphs: Beyond the semicircle law, Phys. Rev. E, 64 (2001), art. no. 026704.
151.
I. J. Farkas, I. Derényi, H. Jeong, Z. Neda, Z. N. Oltvai, E. Ravasz, A. Schurbert, A.‐L. Barabási, and T. Vicsek, Networks in life: Scaling properties and eigenvalue spectra, Phys. A, 314 (2002), pp. 25–34.
152.
I. J. Farkas, H. Jeong, T. Vicsek, A.‐L. Barabási, and Z. N. Oltvai, The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae, Phys. A, 381 (2003), pp. 601–612.
153.
D. A. Fell and A. Wagner, The small world of metabolism, Nature Biotechnology, 18 (2000), pp. 1121–1122.
154.
N. M. Ferguson and G. P. Garnett, More realistic models of sexually transmitted disease transmission dynamics: Sexual partnership networks, pair models, and moment closure, Sex. Transm. Dis., 27 (2000), pp. 600–609.
155.
R. Ferrer i Cancho, C. Janssen, and R. V. Solé, Topology of technology graphs: Small world patterns in electronic circuits, Phys. Rev. E, 64 (2001), art. no. 046119.
156.
R. Ferrer i Cancho and R. V. Solé, Optimization in Complex Networks, Preprint 0111222 (2001);
available from http://arxiv.org/abs/cond‐mat/.
157.
R. Ferrer i Cancho and R. V. Solé, The small world of human language, Proc. Roy. Soc. London Ser. B, 268 (2001), pp. 2261–2265.
158.
G. W. Flake, S. R. Lawrence, C. L. Giles, and F. M. Coetzee, Self‐organization and identification of Web communities, IEEE Computer, 35 (2002), pp. 66–71.
159.
Jeffrey Fox, Colin Hill, From topology to dynamics in biochemical networks, Chaos, 11 (2001), 809–815
160.
Ove Frank, David Strauss, Markov graphs, J. Amer. Statist. Assoc., 81 (1986), 832–842
161.
L. Freeman, A set of measures of centrality based upon betweenness, Sociometry, 40 (1977), pp. 35–41.
162.
L. C. Freeman, Some antecedents of social network analysis, Connections, 19 (1996), pp. 39–42.
163.
J. R. P. French, A formal theory of social power, Psych. Rev., 63 (1956), pp. 181–194.
164.
A. Fronczak, P. Fronczak, and J. A. Holyst, Exact Solution for Average Path Length in Random Graphs, Preprint 0212230 (2002);
available from http://arxiv.org/abs/cond‐mat/.
165.
Agata Fronczak, Janusz Hołyst, Maciej Jedynak, Julian Sienkiewicz, Higher order clustering coefficients in Barabási‐Albert networks, Phys. A, 316 (2002), 688–694
166.
V. Gafiychuk, I. Lubashevsky, and A. Stosyk, Remarks on Scaling Properties Inherent to the Systems with Hierarchically Organized Supplying Network, Preprint 0004033 (2000);
available from http://arxiv.org/abs/nlin/.
167.
J. Galaskiewicz, Social Organization of an Urban Grants Economy, Academic Press, New York, 1985.
168.
J. Galaskiewicz and P. V. Marsden, Interorganizational resource networks: Formal patterns of overlap, Social Sci. Res., 7 (1978), pp. 89–107.
169.
E. Garfield, It’s a small world after all, Current Contents, 43 (1979), pp. 5–10.
170.
I. Garfinkel, D. A. Glei, and S. S. McLanahan, Assortative mating among unmarried parents, J. Population Economics, 15 (2002), pp. 417–432.
171.
M. Girvan and M. E. J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 8271–8276.
172.
Petra Gleiss, Peter Stadler, Andreas Wagner, David Fell, Relevant cycles in chemical reaction networks, Adv. Complex Syst., 4 (2001), 207–226
173.
K.‐I. Goh, B. Kahng, and D. Kim, Spectra and eigenvectors of scale‐free networks, Phys. Rev. E, 64 (2001), art. no. 051903.
174.
Kwang‐Il Goh, Eulsik Oh, Hawoong Jeong, Byungnam Kahng, Doochul Kim, Classification of scale‐free networks, Proc. Natl. Acad. Sci. USA, 99 (2002), 12583–12588
175.
D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, Using collaborative filtering to weave an information tapestry, Comm. ACM, 35 (1992), pp. 61–70.
176.
L. Goldwasser and J. Roughgarden, Construction and analysis of a large Caribbean food web, Ecology, 74 (1993), pp. 1216–1233.
177.
A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Critical phenomena in networks, Phys. Rev. E, 67 (2003), art. no. 026123.
178.
P. Grassberger, On the critical behavior of the general epidemic process and dynamical percolation, Math. Biosci., 63 (1983), pp. 157–172.
179.
Peter Grassberger, Go with the winners: a general Monte Carlo strategy, Proceedings of the Europhysics Conference on Computational Physics (CCP 2001) (Aachen), Vol. 147, 2002, 64–70
180.
David Greenhalgh, Optimal control of an epidemic by ring vaccination, Comm. Statist. Stochastic Models, 2 (1986), 339–363
181.
Jerrold Grossman, Patrick Ion, On a portion of the well‐known collaboration graph, Proceedings of the Twenty‐sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995), Vol. 108, 1995, 129–131
182.
J. Guare, Six Degrees of Separation: A Play, Vintage, New York, 1990.
183.
N. Guelzim, S. Bottani, P. Bourgine, and F. Kepes, Topological and causal structure of the yeast transcriptional regulatory network, Nature Genetics, 31 (2002), pp. 60–63.
184.
R. Guimerà, L. Danon, A. Díaz‐Guilera, F. Giralt, and A. Arenas, Self‐Similar Community Structure in Organisations, Preprint 0211498 (2002);
available from http://arxiv.org/abs/cond‐mat/.
185.
S. Gupta, R. M. Anderson, and R. M. May, Networks of sexual contacts: Implications for the pattern of spread of HIV, AIDS, 3 (1989), pp. 807–817.
186.
J. Hammersley, Percolation processes. II. The connective constant, Proc. Cambridge Philos. Soc., 53 (1957), 642–645
187.
Frank Harary, Graph theory, Addison‐Wesley Publishing Co., Reading, Mass.‐Menlo Park, Calif.‐London, 1969ix+274
188.
B. Hayes, Graph theory in practice: Part I, Amer. Sci., 88 (2000), pp. 9–13.
189.
B. Hayes, Graph theory in practice: Part II, Amer. Sci., 88 (2000), pp. 104–109.
190.
C. P. Herrero, Ising model in small‐world networks, Phys. Rev. E, 65 (2002), art. no. 066110.
191.
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), pp. 599–653.
192.
D. J. Higham, Greedy Pathlengths and Small World Graphs, Mathematics Research Report 8, University of Strathclyde, Glasgow, UK, 2002.
193.
Paul Holland, Samuel Leinhardt, An exponential family of probability distributions for directed graphs, J. Amer. Statist. Assoc., 76 (1981), 33–65, With comments by Ronald L. Breiger, Stephen E. Fienberg, Stanley Wasserman, Ove Frank and Shelby J. Haberman and a reply by the authors
194.
P. Holme, Edge overload breakdown in evolving networks, Phys. Rev. E, 66 (2002), art. no. 036119.
195.
P. Holme, C. R. Edling, and F. Liljeros, Structure and Time‐Evolution of the Internet Community pussokram.com, Preprint 0210514 (2002);
available from http://arxiv.org/abs/cond‐mat/.
196.
P. Holme, M. Huss, and H. Jeong, Subnetwork Hierarchies of Biochemical Pathways, Preprint 0206292 (2002);
available from http://arxiv.org/abs/cond‐mat/.
197.
P. Holme and B. J. Kim, Growing scale‐free networks with tunable clustering, Phys. Rev. E, 65 (2002), art. no. 026107.
198.
P. Holme and B. J. Kim, Vertex overload breakdown in evolving networks, Phys. Rev. E, 65 (2002), art. no. 066109.
199.
P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, Attack vulnerability of complex networks, Phys. Rev. E, 65 (2002), art. no. 056109.
200.
H. Hong, M. Y. Choi, and B. J. Kim, Synchronization on small‐world networks, Phys. Rev. E, 65 (2002), art. no. 026139.
201.
H. Hong, B. J. Kim, and M. Y. Choi, Comment on “Ising model on a small world network,” Phys. Rev. E, 66 (2002), art. no. 018101.
202.
B. A. Huberman, The Laws of the Web, MIT Press, Cambridge, MA, 2001.
203.
M. Huxham, S. Beaney, and D. Raffaelli, Do parasites reduce the chances of triangulation in a real food web?, Oikos, 76 (1996), pp. 284–300.
204.
A. Iamnitchi, M. Ripeanu, and I. Foster, Locating data in (small‐world?) peer‐to‐peer scientific collaborations, in Proceedings of the First International Workshop on Peer‐to‐Peer Systems, P. Druschel, F. Kaashoek, and A. Rowstron, eds., Lecture Notes in Comput. Sci. 2429, Springer‐Verlag, Berlin, 2002, pp. 232–241.
205.
T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, A comprehensive two‐hybrid analysis to explore the yeast protein interactome, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 4569–4574.
206.
A. Jaffe and M. Trajtenberg, Patents, Citations and Innovations: A Window on the Knowledge Economy, MIT Press, Cambridge, MA, 2002.
207.
A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: A review, ACM Comput. Surveys, 31 (1999), pp. 264–323.
208.
S. Jain and S. Krishna, Autocatalytic sets and the growth of complexity in an evolutionary model, Phys. Rev. Lett., 81 (1998), pp. 5684–5687.
209.
S. Jain and S. Krishna, A model for the emergence of cooperation, interdependence, and structure in evolving networks, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 543–547.
210.
Svante Janson, Tomasz Łuczak, Andrzej Rucinski, Random graphs, Wiley‐Interscience Series in Discrete Mathematics and Optimization, Wiley‐Interscience, New York, 2000xii+333
211.
H. Jeong, S. Mason, A.‐L. Barabási, and Z. N. Oltvai, Lethality and centrality in protein networks, Nature, 411 (2001), pp. 41–42.
212.
H. Jeong, Z. Néda, and A.‐L. Barabási, Measuring preferential attachment in evolving networks, Europhys. Lett., 61 (2003), pp. 567–572.
213.
H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.‐L. Barabási, The large‐scale organization of metabolic networks, Nature, 407 (2000), pp. 651–654.
214.
S. Jespersen and A. Blumen, Small‐world networks: Links with long‐tailed distributions, Phys. Rev. E, 62 (2000), pp. 6270–6274.
215.
S. Jespersen, I. M. Sokolov, and A. Blumen, Relaxation properties of small‐world networks, Phys. Rev. E, 62 (2000), pp. 4405–4408.
216.
E. M. Jin, M. Girvan, and M. E. J. Newman, The structure of growing social networks, Phys. Rev. E, 64 (2001), art. no. 046132.
217.
J. H. Jones and M. S. Handcock, An Assessment of Preferential Attachment as a Mechanism for Human Sexual Network Formation, preprint, University of Washington, Seattle, 2003.
218.
P. Jordano, J. Bascompte, and J. M. Olesen, Invariant properties in coevolutionary networks of plant‐animal interactions, Ecology Lett., 6 (2003), pp. 69–81.
219.
J. Jost and M. P. Joy, Evolving networks with distance preferences, Phys. Rev. E, 66 (2002), art. no. 036126.
220.
V. K. Kalapala, V. Sanwalani, and C. Moore, The Structure of the United States Road Network, preprint, University of New Mexico, Albuquerque, 2003.
221.
F. Karinthy, Chains, in Everything is Different, Budapest, 1929.
222.
Michał Karoński, A review of random graphs, J. Graph Theory, 6 (1982), 349–389
223.
S. A. Kauffman, Metabolic stability and epigenesis in randomly connected nets, J. Theor. Bio., 22 (1969), pp. 437–467.
224.
S. A. Kauffman, Gene regulation networks: A theory for their structure and global behavior, in Current Topics in Developmental Biology 6, A. Moscana and A. Monroy, eds., Academic Press, New York, 1971, pp. 145–182.
225.
S. A. Kauffman, The Origins of Order, Oxford University Press, Oxford, 1993.
226.
H. Kautz, B. Selman, and M. Shah, ReferralWeb: Combining social networks and collaborative filtering, Comm. ACM, 40 (1997), pp. 63–65.
227.
M. J. Keeling, The effects of local spatial structure on epidemiological invasion, Proc. Roy. Soc. London Ser. B, 266 (1999), pp. 859–867.
228.
J. O. Kephart and S. R. White, Directed‐graph epidemiological models of computer viruses, in Proceedings of the 1991 IEEE Computer Society Symposium on Research in Security and Privacy, IEEE Computer Society, Los Alamitos, CA, 1991, pp. 343–359.
229.
P. D. Killworth and H. R. Bernard, The reverse small world experiment, Social Networks, 1 (1978), pp. 159–192.
230.
B. J. Kim, A. Trusina, P. Holme, P. Minnhagen, J. S. Chung, and M. Y. Choi, Dynamic instabilities induced by asymmetric influence: Prisoners’ dilemma game on small‐world networks, Phys. Rev. E, 66 (2002), art. no. 021907.
231.
B. J. Kim, C. N. Yoon, S. K. Han, and H. Jeong, Path finding strategies in scale‐free networks, Phys. Rev. E, 65 (2002), art. no. 027103.
232.
J. Kim, P. L. Krapivsky, B. Kahng, and S. Redner, Infinite‐order percolation and giant fluctuations in a protein interaction network, Phys. Rev. E, 66 (2002), art. no. 055101.
233.
O. Kinouchi, A. S. Martinez, G. F. Lima, G. M. Lourenço, and S. Risau‐Gusman, Deterministic walks in random networks: An application to thesaurus graphs, Phys. A, 315 (2002), pp. 665–676.
234.
A. Kleczkowski and B. T. Grenfell, Mean‐field‐type equations for spread of epidemics: The “small world” model, Phys. A, 274 (1999), pp. 355–360.
235.
J. Kleinberg and S. Lawrence, The structure of the Web, Science, 294 (2001), pp. 1849–1850.
236.
Jon Kleinberg, Authoritative sources in a hyperlinked environment, J. ACM, 46 (1999), 604–632
237.
J. M. Kleinberg, Navigation in a small world, Nature, 406 (2000), p. 845.
238.
J. M. Kleinberg, The small‐world phenomenon: An algorithmic perspective, in Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, Association of Computing Machinery, New York, 2000, pp. 163–170.
239.
J. M. Kleinberg, Small world phenomena and the dynamics of information, in Proceedings of the 2001 Neural Information Processing Systems Conference, T. G. Dietterich, S. Becker, and Z. Ghahramani, eds., MIT Press, Cambridge, MA, 2002.
240.
Jon Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, Andrew Tomkins, The web as a graph: measurements, models, and methods, Lecture Notes in Comput. Sci., Vol. 1627, Springer, Berlin, 1999, 1–17
241.
K. Klemm and V. M. Eguiluz, Highly clustered scale‐free networks, Phys. Rev. E, 65 (2002), art. no. 036123.
242.
A. S. Klovdahl, J. J. Potterat, D. E. Woodhouse, J. B. Muth, S. Q. Muth, and W. W. Darrow, Social networks and infectious disease: The Colorado Springs study, Soc. Sci. Med., 38 (1994), pp. 79–88.
243.
D. E. Knuth, The Stanford GraphBase: A Platform for Combinatorial Computing, Addison–Wesley, Reading, MA, 1993.
244.
P. L. Krapivsky and S. Redner, Organization of growing random networks, Phys. Rev. E, 63 (2001), art. no. 066123.
245.
P. Krapivsky, S. Redner, Finiteness and fluctuations in growing networks, J. Phys. A, 35 (2002), 9517–9534
246.
P. L. Krapivsky and S. Redner, A statistical physics perspective on Web growth, Computer Networks, 39 (2002), pp. 261–276.
247.
P. L. Krapivsky and S. Redner, Rate equation approach for growing networks, in Proceedings of the 18th Sitges Conference on Statistical Mechanics, R. Pastor‐Satorras and J. Rubi, eds., Lecture Notes in Phys., Springer‐Verlag, Berlin, 2003.
248.
P. L. Krapivsky, S. Redner, and F. Leyvraz, Connectivity of growing random networks, Phys. Rev. Lett., 85 (2000), pp. 4629–4632.
249.
P. L. Krapivsky, G. J. Rodgers, and S. Redner, Degree distributions of growing networks, Phys. Rev. Lett., 86 (2001), pp. 5401–5404.
250.
M. Kretzschmar, Y. T. H. P. van Duynhoven, and A. J. Severijnen, Modeling prevention strategies for gonorrhea and chlamydia using stochastic network simulations, Amer. J. Epidemiol., 114 (1996), pp. 306–317.
251.
R. V. Kulkarni, E. Almaas, and D. Stroud, Evolutionary Dynamics in the Bak‐Sneppen Model on Small‐World Networks, Preprint 9908216 (1999); available from http://arxiv.org/abs/cond‐mat/.
252.
R. V. Kulkarni, E. Almaas, and D. Stroud, Exact results and scaling properties of small‐world networks, Phys. Rev. E, 61 (2000), pp. 4268–4271.
253.
Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivakumar, Andrew Tomkins, Eli Upfal, Stochastic models for the web graph, IEEE Comput. Soc. Press, Los Alamitos, CA, 2000, 57–65
254.
M. Kuperman and G. Abramson, Small world effect in an epidemiological model, Phys. Rev. Lett., 86 (2001), pp. 2909–2912.
255.
M. Kuperman and D. H. Zanette, Stochastic resonance in a model of opinion formation on small world networks, Eur. Phys. J. B, 26 (2002), pp. 387–391.
256.
L. F. Lago‐Fernández, R. Huerta, F. Corbacho, and J. A. Sigüenza, Fast response and temporal coherent oscillations in small‐world networks, Phys. Rev. Lett., 84 (2000), pp. 2758–2761.
257.
J. Lahtinen, J. Kertész, and K. Kaski, Scaling of random spreading in small world networks, Phys. Rev. E, 64 (2001), art. no. 057105.
258.
J. Lahtinen, J. Kertész, and K. Kaski, Random spreading phenomena in annealed small world networks, Phys. A, 311 (2002), pp. 571–580.
259.
V. Latora and M. Marchiori, Efficient behavior of small‐world networks, Phys. Rev. Lett., 87 (2001), art. no. 198701.
260.
V. Latora and M. Marchiori, Economic Small‐World Behavior in Weighted Networks, Preprint 0204089 (2002);
available from http://arxiv.org/abs/cond‐mat/.
261.
V. Latora and M. Marchiori, Is the Boston subway a small‐world network?, Phys. A, 314 (2002), pp. 109–113.
262.
S. Lawrence and C. L. Giles, Accessibility of information on the web, Nature, 400 (1999), pp. 107–109.
263.
M. Leone, A. Vázquez, A. Vespignani, and R. Zecchina, Ferromagnetic ordering in graphs with arbitrary degree distribution, Eur. Phys. J. B, 28 (2002), pp. 191–197.
264.
F. Liljeros, C. R. Edling, and L. A. N. Amaral, Sexual networks: Implication for the transmission of sexually transmitted infection, Microbes and Infections (to appear).
265.
F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Åberg, The web of human sexual contacts, Nature, 411 (2001), pp. 907–908.
266.
A. L. Lloyd and R. M. May, How viruses spread among computers and people, Science, 292 (2001), pp. 1316–1317.
267.
Tomasz Łuczak, Sparse random graphs with a given degree sequence, Wiley‐Intersci. Publ., Wiley, New York, 1992, 165–182
268.
P. Mariolis, Interlocking directorates and control of corporations: The theory of bank control, Social Sci. Quart., 56 (1975), pp. 425–439.
269.
A. Maritan, A. Rinaldo, R. Rigon, A. Giacometti, and I. Rodríguez‐Iturbe, Scaling laws for river networks, Phys. Rev. E, 53 (1996), pp. 1510–1515.
270.
P. V. Marsden, Network data and measurement, Ann. Rev. Sociology, 16 (1990), pp. 435–463.
271.
N. D. Martinez, Artifacts or attributes? Effects of resolution on the Little Rock Lake food web, Ecological Monographs, 61 (1991), pp. 367–392.
272.
N. D. Martinez, Constant connectance in community food webs, Amer. Naturalist, 139 (1992), pp. 1208–1218.
273.
S. Maslov and K. Sneppen, Specificity and stability in topology of protein networks, Science, 296 (2002), pp. 910–913.
274.
S. Maslov, K. Sneppen, and A. Zaliznyak, Pattern Detection in Complex Networks: Correlation Profile of the Internet, Preprint 0205379 (2002); available from http://arxiv.org/abs/cond‐mat/.
275.
R. M. May and R. M. Anderson, The transmission dynamics of human immunodeficiency virus (HIV), Philos. Trans. Roy. Soc. London Ser. B, 321 (1988), pp. 565–607.
276.
R. M. May and A. L. Lloyd, Infection dynamics on scale‐free networks, Phys. Rev. E, 64 (2001), art. no. 066112.
277.
Ronald Meester, Rahul Roy, Continuum percolation, Cambridge Tracts in Mathematics, Vol. 119, Cambridge University Press, 1996x+238
278.
G. Melin and O. Persson, Studying research collaboration using co‐authorships, Scientometrics, 36 (1996), pp. 363–377.
279.
F. Menczer and R. K. Belew, Adaptive retrieval agents: Internalizing local context and scaling up to the Web, Machine Learning, 39 (2000), pp. 203–242.
280.
F. Menczer, G. Pant, M. Ruiz, and P. Srinivasan, Evaluating topic‐driven Web crawlers, in Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, D. H. Kraft, W. B. Croft, D. J. Harper, and J. Zobel, eds., Association of Computing Machinery, New York, 2001, pp. 241–249.
281.
R. K. Merton, The Matthew effect in science, Science, 159 (1968), pp. 56–63.
282.
S. Milgram, The small world problem, Psych. Today, 2 (1967), pp. 60–67.
283.
R. Milo, S. Shen‐Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs: Simple building blocks of complex networks, Science, 298 (2002), pp. 824–827.
284.
M. Mitchell, Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, 1996.
285.
M. S. Mizruchi, The American Corporate Network, 1904–1974, Sage, Beverly Hills, CA, 1982.
286.
Michael Molloy, Bruce Reed, A critical point for random graphs with a given degree sequence, Proceedings of the Sixth International Seminar on Random Graphs and Probabilistic Methods in Combinatorics and Computer Science, “Random Graphs ’93” (Poznań, 1993), Vol. 6, 1995, 161–179
287.
Michael Molloy, Bruce Reed, The size of the giant component of a random graph with a given degree sequence, Combin. Probab. Comput., 7 (1998), 295–305
288.
R. Monasson, Diffusion, localization and dispersion relations on “small‐world” lattices, Eur. Phys. J. B, 12 (1999), pp. 555–567.
289.
J. M. Montoya and R. V. Solé, Smallworld patterns in food webs, J. Theor. Bio., 214 (2002), pp. 405–412.
290.
J. Moody, Race, school integration, and friendship segregation in America, Amer. J. Sociol., 107 (2001), pp. 679–716.
291.
J. Moody, The structure of a social science collaboration network, preprint, Department of Sociology, Ohio State University, Columbus, 2003.
292.
C. Moore and M. E. J. Newman, Epidemics and percolation in small‐world networks, Phys. Rev. E, 61 (2000), pp. 5678–5682.
293.
C. Moore and M. E. J. Newman, Exact solution of site and bond percolation on small‐world networks, Phys. Rev. E, 62 (2000), pp. 7059–7064.
294.
A. A. Moreira, J. S. Andrade, Jr., and L. A. N. Amaral, Extremum Statistics in Scale‐Free Network Models, Preprint 0205411 (2002);
available from http://arxiv.org/abs/cond‐mat/.
295.
J. L. Moreno, Who Shall Survive?, Beacon House, Beacon, NY, 1934.
296.
Y. Moreno, J. B. Gómez, and A. F. Pacheco, Instability of scale‐free networks under node‐breaking avalanches, Europhys. Lett., 58 (2002), pp. 630–636.
297.
Y. Moreno, R. Pastor‐Satorras, A. Vázquez, and A. Vespignani, Critical Load and Congestion Instabilities in Scale‐Free Networks, Preprint 0209474 (2002);
available from http://arxiv.org/abs/cond‐mat/.
298.
Y. Moreno, R. Pastor‐Satorras, and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Eur. Phys. J. B, 26 (2002), pp. 521–529.
299.
Y. Moreno and A. Vázquez, The Bak‐Sneppen model on scale‐free networks, Europhys. Lett., 57 (2002), pp. 765–771.
300.
Y. Moreno and A. Vázquez, Disease Spreading in Structured Scale‐Free Networks, Preprint 0210362 (2002);
available from http://arxiv.org/abs/cond‐mat/.
301.
M. Morris, Data driven network models for the spread of infectious disease, in Epidemic Models: Their Structure and Relation to Data, D. Mollison, ed., Cambridge University Press, Cambridge, UK, 1995, pp. 302–322.
302.
M. Morris, Sexual networks and HIV, AIDS 97: Year in Review, 11 (1997), pp. 209–216.
303.
A. E. Motter, A. P. de Moura, Y.‐C. Lai, and P. Dasgupta, Topology of the conceptual network of language, Phys. Rev. E, 65 (2002), art. no. 065102.
304.
A. E. Motter and Y.‐C. Lai, Cascade‐based attacks on complex networks, Phys. Rev. E, 66 (2002), art. no. 065102.
305.
Cristian Moukarzel, Spreading and shortest paths in systems with sparse long‐range connections, Phys. Rev. E (3), 60 (1999), 0–0R6263–R6266
306.
C. F. Moukarzel and M. A. de Menezes, Shortest paths on systems with power‐law distributed long‐range connections, Phys. Rev. E, 65 (2002), art. no. 056709.
307.
Johannes Müller, Birgitt Schönfisch, Markus Kirkilionis, Ring vaccination, J. Math. Biol., 41 (2000), 143–171
308.
M. E. J. Newman, Models of the small world, J. Statist. Phys., 101 (2000), pp. 819–841.
309.
M. E. J. Newman, Clustering and preferential attachment in growing networks, Phys. Rev. E, 64 (2001), art. no. 025102.
310.
M. E. J. Newman, Scientific collaboration networks: I. Network construction and fundamental results, Phys. Rev. E, 64 (2001), art. no. 016131.
311.
M. E. J. Newman, Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, Phys. Rev. E, 64 (2001), art. no. 016132.
312.
M. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, 98 (2001), 404–409
313.
M. E. J. Newman, Assortative mixing in networks, Phys. Rev. Lett., 89 (2002), art. no. 208701.
314.
M. Newman, Spread of epidemic disease on networks, Phys. Rev. E (3), 66 (2002), 0–0016128, 11
315.
M. Newman, The structure and function of networks, Proceedings of the Europhysics Conference on Computational Physics (CCP 2001) (Aachen), Vol. 147, 2002, 40–45
316.
M. E. J. Newman, Ego‐centered networks and the ripple effect, Social Networks, 25 (2003), pp. 83–95.
317.
M. E. J. Newman, Mixing patterns in networks, Phys. Rev. E, 67 (2003), art. no. 026126.
318.
M. E. J. Newman, Random graphs as models of networks, in Handbook of Graphs and Networks, S. Bornholdt and H. G. Schuster, eds., Wiley‐VCH, Berlin, 2003, pp. 35–68.
319.
M. E. J. Newman, A.‐L. Barabási, and D. J. Watts, The Structure and Dynamics of Networks, Princeton University Press, Princeton, NJ, 2003.
320.
M. E. J. Newman, S. Forrest, and J. Balthrop, Email networks and the spread of computer viruses, Phys. Rev. E, 66 (2002), art. no. 035101.
321.
M. E. J. Newman, C. Moore, and D. J. Watts, Mean‐field solution of the small‐world network model, Phys. Rev. Lett., 84 (2000), pp. 3201–3204.
322.
M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64 (2001), art. no. 026118.
323.
M. Newman, D. Watts, Renormalization group analysis of the small‐world network model, Phys. Lett. A, 263 (1999), 341–346
324.
M. E. J. Newman and D. J. Watts, Scaling and percolation in the small‐world network model, Phys. Rev. E, 60 (1999), pp. 7332–7342.
325.
M. Ozana, Incipient spanning cluster on small‐world networks, Europhys. Lett., 55 (2001), pp. 762–766.
326.
J. F. Padgett and C. K. Ansell, Robust action and the rise of the Medici, 1400–1434, Amer. J. Sociol., 98 (1993), pp. 1259–1319.
327.
L. Page, S. Brin, R. Motwani, and T. Winograd, The Pagerank Citation Ranking: Bringing Order to the web, technical report, Stanford University, Stanford, CA, 1998.
328.
S. A. Pandit and R. E. Amritkar, Random spread on the family of small‐world networks, Phys. Rev. E, 63 (2001), art. no. 041104.
329.
R. Pastor‐Satorras and J. Rubi, eds., Proceedings of the 18th Sitges Conference on Statistical Mechanics, Lecture Notes in Phys., Springer‐Verlag, Berlin, 2003.
330.
R. Pastor‐Satorras, A. Vázquez, and A. Vespignani, Dynamical and correlation properties of the Internet, Phys. Rev. Lett., 87 (2001), art. no. 258701.
331.
R. Pastor‐Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63 (2001), art. no. 066117.
332.
R. Pastor‐Satorras and A. Vespignani, Epidemic spreading in scale‐free networks, Phys. Rev. Lett., 86 (2001), pp. 3200–3203.
333.
R. Pastor‐Satorras and A. Vespignani, Epidemic dynamics in finite size scale‐free networks, Phys. Rev. E, 65 (2002), art. no. 035108.
334.
R. Pastor‐Satorras and A. Vespignani, Immunization of complex networks, Phys. Rev. E, 65 (2002), art. no. 036104.
335.
R. Pastor‐Satorras and A. Vespignani, Epidemics and immunization in scale‐free networks, inHandbook of Graphs and Networks, S. Bornholdt and H. G. Schuster, eds., Wiley‐VCH, Berlin, 2003.
336.
A. Pe¸kalski, Ising model on a small world network, Phys. Rev. E, 64 (2001), art. no. 057104.
337.
D. M. Pennock, G. W. Flake, S. Lawrence, E. J. Glover, and C. L. Giles, Winners don’t take all: Characterizing the competition for links on the web, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 5207–5211.
338.
S. L. Pimm, Food Webs, 2nd ed., University of Chicago Press, Chicago, 2002.
339.
J. Podani, Z. N. Oltvai, H. Jeong, B. Tombor, A.‐L. Barabási, and E. Szathmary, Comparable system‐level organization of Archaea and Eukaryotes, Nature Genetics, 29 (2001), pp. 54–56.
340.
I. de S. Pool and M. Kochen, Contacts and influence, Social Networks, 1 (1978), pp. 1–48.
341.
J. J. Potterat, L. Phillips‐Plummer, S. Q. Muth, R. B. Rothenberg, D. E. Woodhouse, T. S. Maldonado‐Long, H. P. Zimmerman, and J. B. Muth, Risk network structure in the early epidemic phase of HIV transmission in Colorado Springs, Sexually Transmitted Infections, 78 (2002), pp. i159–i163.
342.
D. J. de S. Price, Networks of scientific papers, Science, 149 (1965), pp. 510–515.
343.
D. J. de S. Price, A general theory of bibliometric and other cumulative advantage processes, J. Amer. Soc. Inform. Sci., 27 (1976), pp. 292–306.
344.
A. Ramezanpour, V. Karimipour, and A. Mashaghi, Generating Correlated Networks from Uncorrelated Ones, Preprint 0212469 (2002);
available from http://arxiv.org/abs/cond‐mat/.
345.
Anatol Rapoport, Contribution to the theory of random and biased nets, Bull. Math. Biophys., 19 (1957), 257–277
346.
A. Rapoport, Cycle distribution in random nets, Bull. Math. Biophys., 10 (1968), pp. 145–157.
347.
A. Rapoport and W. J. Horvath, A study of a large sociogram, Behavioral Sci., 6 (1961), pp. 279–291.
348.
E. Ravasz and A.‐L. Barabási, Hierarchical organization in complex networks, Phys. Rev. E, 67 (2003), art. no. 026112.
349.
E. Ravasz, A. L. Somera, D. A. Mongru, Z. Oltvai, and A.‐L. Barabási, Hierarchical organization of modularity in metabolic networks, Science, 297 (2002), pp. 1551–1555.
350.
S. Redner, How popular is your paper? An empirical study of the citation distribution, Eur. Phys. J. B, 4 (1998), pp. 131–134.
351.
P. Resnick and H. R. Varian, Recommender systems, Comm. ACM, 40 (1997), pp. 56–58.
352.
A. Rinaldo, I. Rodríguez‐Iturbe, and R. Rigon, Channel networks, Ann. Rev. Earth and Planetary Sci., 26 (1998), pp. 289–327.
353.
M. Ripeanu, I. Foster, and A. Iamnitchi, Mapping the Gnutella network: Properties of large‐scale peer‐to‐peer systems and implications for system design, IEEE Internet Comput., 6 (2002), pp. 50–57.
354.
G. J. Rodgers and K. Darby‐Dowman, Properties of a growing random directed network, Eur. Phys. J. B, 23 (2001), pp. 267–271.
355.
I. Rodríguez‐Iturbe and A. Rinaldo, Fractal River Basins: Chance and Self‐Organization, Cambridge University Press, Cambridge, UK, 1997.
356.
F. J. Roethlisberger and W. J. Dickson, Management and the Worker, Harvard University Press, Cambridge, MA, 1939.
357.
R. Rothenberg, J. Baldwin, R. Trotter, and S. Muth, The risk environment for HIV transmission: Results from the Atlanta and Flagstaff network studies, J. Urban Health, 78 (2001), pp. 419–431.
358.
A. F. Rozenfeld, R. Cohen, D. ben‐Avraham, and S. Havlin, Scale‐free networks on lattices, Phys. Rev. Lett., 89 (2002), art. no. 218701.
359.
L. M. Sander, C. P. Warren, I. Sokolov, C. Simon, and J. Koopman, Percolation on disordered networks as a model for epidemics, Math. Biosci., 180 (2002), pp. 293–305.
360.
A. Scala, L. A. N. Amaral, and M. Barthélémy, Small‐world networks and the conformation space of a short lattice polymer chain, Europhys. Lett., 55 (2001), pp. 594–600.
361.
N. Schwartz, R. Cohen, D. ben‐Avraham, A.‐L. Barabási, S. Havlin, Percolation in directed scale‐free networks, Phys. Rev. E (3), 66 (2002), 0–0015104, 4
362.
J. Scott, Social Network Analysis: A Handbook, 2nd ed., Sage, London, 2000.
363.
P. O. Seglen, The skewness of science, J. Amer. Soc. Inform. Sci., 43 (1992), pp. 628–638.
364.
P. Sen and B. K. Chakrabarti, Small‐world phenomena and the statistics of linear polymers, J. Phys. A, 34 (2001), pp. 7749–7755.
365.
P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, and S. S. Manna, Small‐World Properties of the Indian Railway Network, Preprint 0208535 (2002);
available from http://arxiv.org/abs/cond‐mat/.
366.
U. Shardanand and P. Maes, Social information filtering: Algorithms for automating “word of mouth,” in Proceedings of ACM Conference on Human Factors and Computing Systems, Association of Computing Machinery, New York, 1995, pp. 210–217.
367.
S. Shen‐Orr, R. Milo, S. Mangan, and U. Alon, Network motifs in the transcriptional regulation network of Escherichia coli, Nature Genetics, 31 (2002), pp. 64–68.
368.
M. Sigman and G. A. Cecchi, Global organization of the Wordnet lexicon, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 1742–1747.
369.
Herbert Simon, On a class of skew distribution functions, Biometrika, 42 (1955), 425–440
370.
R. D. Smith, Instant Messaging as a Scale‐Free Network, Preprint 0206378 (2002);
available from http://arxiv.org/abs/cond‐mat/.
371.
T. A. B. Snijders, Markov chain Monte Carlo estimation of exponential random graph models, J. Social Structure, 2 (2002).
372.
J. E. S. Socolar and S. A. Kauffman, Scaling in ordered and critical random Boolean networks, Phys. Rev. Lett., 90 (2003), art. no. 068702.
373.
Bo Söderberg, General formalism for inhomogeneous random graphs, Phys. Rev. E (3), 66 (2002), 0–0066121, 6
374.
R. V. Solé and J. M. Montoya, Complexity and fragility in ecological networks, Proc. Roy. Soc. London Ser. B, 268 (2001), pp. 2039–2045.
375.
R. V. Solé and R. Pastor‐Satorras, Complex networks in genomics and proteomics, in Handbook of Graphs and Networks, S. Bornholdt and H. G. Schuster, eds., Wiley‐VCH, Berlin, 2003, pp. 145–167.
376.
R. V. Solé, R. Pastor‐Satorras, E. Smith, and T. B. Kepler, A model of large‐scale proteome evolution, Adv. in Complex Systems, 5 (2002), pp. 43–54.
377.
Ray Solomonoff, Anatol Rapoport, Connectivity of random nets, Bull. Math. Biophys., 13 (1951), 107–117
378.
O. Sporns, Network analysis, complexity, and brain function, Complexity, 8 (2002), pp. 56–60.
379.
O. Sporns, G. Tononi, and G. M. Edelman, Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices, Cerebral Cortex, 10 (2000), pp. 127–141.
380.
D. Stauffer, Monte Carlo simulations of Sznajd models, J. Artificial Societies and Social Simulation, 5 (1) (2002);
available online from http://jasss.soc.surrey.ac.uk/5/1/4.html.
381.
D. Stauffer, A. Aharony, L. da Fontoura Costa, and J. Adler, Efficient Hopfield Pattern Recognition on a Scale‐Free Neural Network, Preprint 0212601 (2002);
available from http://arxiv.org/abs/cond‐mat/.
382.
J. Stelling, S. Klamt, K. Bettenbrock, S. Schuster, and E. D. Gilles, Metabolic network structure determines key aspects of functionality and regulation, Nature, 420 (2002), pp. 190–193.
383.
M. Steyvers and J. B. Tenenbaum, The Large‐Scale Structure of Semantic Networks: Statistical Analyses and a Model for Semantic Growth, Preprint 0110012 (2001);
available from http://arxiv.org/abs/cond‐mat/.
384.
David Strauss, On a general class of models for interaction, SIAM Rev., 28 (1986), 513–527
385.
S. H. Strogatz, Nonlinear Dynamics and Chaos, Addison–Wesley, Reading, MA, 1994.
386.
S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), pp. 268–276.
387.
P. Svenson, From Néel to NPC: Colouring Small Worlds, Preprint 0107015 (2001);
available from http://arxiv.org/abs/cs/.
388.
G. Szabó, M. Alava, and J. Kertész, Structural Transitions in Scale‐Free Networks, Preprint 0208551 (2002);
available from http://arxiv.org/abs/cond‐mat/.
389.
K. Sznajd‐Weron and J. Sznajd, Opinion evolution in closed community, Internat. J. Modern Phys. C, 11 (2000), pp. 1157–1165.
390.
B. Tadić, Dynamics of directed graphs: The World‐Wide Web, Phys. A, 293 (2001), pp. 273–284.
391.
Bosiljka Tadić, Temporal fractal structures: origin of power laws in the World‐Wide Web, Phys. A, 314 (2002), 278–283, Horizons in complex systems (Messina, 2001)
392.
J. Travers and S. Milgram, An experimental study of the small world problem, Sociometry, 32 (1969), pp. 425–443.
393.
P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi‐Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J. M. Rothberg, A comprehensive analysis of protein–protein interactions in saccharomyces cerevisiae, Nature, 403 (2000), pp. 623–627.
394.
S. Valverde, R. F. Cancho, and R. V. Solé, Scale‐free networks from optimal design, Europhys. Lett., 60 (2002), pp. 512–517.
395.
A. Vázquez, Statistics of Citation Networks, Preprint 0105031 (2001);
available from http://arxiv.org/abs/cond‐mat/.
396.
A. Vázquez, Growing Networks with Local Rules: Preferential Attachment, Clustering Hierarchy and Degree Correlations, Preprint 0211528 (2002);
available from http://arxiv.org/abs/cond‐mat/.
397.
A. Vázquez, M. Boguñá, Y. Moreno, R. Pastor‐Satorras, and A. Vespignani, Topology and Correlations in Structured Scale‐Free Networks, Preprint 0209183 (2002);
available from http://arxiv.org/abs/cond‐mat/.
398.
A. Vázquez, A. Flammini, A. Maritan, and A. Vespignani, Modeling of protein interaction networks, Complexus, 1 (2003), pp. 38–44.
399.
A. Vázquez and Y. Moreno, Resilience to damage of graphs with degree correlations, Phys. Rev. E, 67 (2003), art. no. 015101.
400.
A. Vázquez, R. Pastor‐Satorras, and A. Vespignani, Large‐scale topological and dynamical properties of the Internet, Phys. Rev. E, 65 (2002), art. no. 066130.
401.
A. Vázquez and M. Weigt, Computational complexity arising from degree correlations in networks, Phys. Rev. E, 67 (2003), art. no. 027101.
402.
F. Vazquez, P. Krapivsky, S. Redner, Constrained opinion dynamics: freezing and slow evolution, J. Phys. A, 36 (2003), 0–0L61–L68
403.
A. Wagner, The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes, Mol. Biol. Evol., 18 (2001), pp. 1283–1292.
404.
A. Wagner and D. Fell, The small world inside large metabolic networks, Proc. Roy. Soc. London Ser. B, 268 (2001), pp. 1803–1810.
405.
T. Walsh, Search in a small world, in Proceedings of the 16th International Joint Conference on Artificial Intelligence, T. Dean, ed., Morgan‐Kaufmann, San Francisco, CA, 1999.
406.
Bo‐Ying Wang, Fuzhen Zhang, On the precise number of (0,1)‐matrices in 𝔄(R,S), Discrete Math., 187 (1998), 211–220
407.
C. P. Warren, L. M. Sander, and I. Sokolov, Geography in a scale‐free network model, Phys. Rev. E, 66 (2002), art. no. 056105.
408.
S. Wasserman and K. Faust, Social Network Analysis, Cambridge University Press, Cambridge, UK, 1994.
409.
Stanley Wasserman, Philippa Pattison, Logitmodels and logistic regressions for social networks. I. An introduction to Markov graphs and p, Psychometrika, 61 (1996), 401–425
410.
D. J. Watts, Networks, dynamics, and the small world phenomenon, Amer. J. Sociol., 105 (1999), pp. 493–592.
411.
Duncan Watts, Small worlds, Princeton Studies in Complexity, Princeton University Press, 1999xvi+262, The dynamics of networks between order and randomness
412.
Duncan Watts, A simple model of global cascades on random networks, Proc. Natl. Acad. Sci. USA, 99 (2002), 5766–5771
413.
D. J. Watts, Six Degrees: The Science of a Connected Age, Norton, New York, 2003.
414.
D. J. Watts, P. S. Dodds, and M. E. J. Newman, Identity and search in social networks, Science, 296 (2002), pp. 1302–1305.
415.
D. J. Watts and S. H. Strogatz, Collective dynamics of “small‐world” networks, Nature, 393 (1998), pp. 440–442.
416.
G. B. West, J. H. Brown, and B. J. Enquist, A general model for the origin of allometric scaling laws in biology, Science, 276 (1997), pp. 122–126.
417.
G. B. West, J. H. Brown, and B. J. Enquist, A general model for the structure, and allometry of plant vascular systems, Nature, 400 (1999), pp. 664–667.
418.
H. C. White, S. A. Boorman, and R. L. Breiger, Social structure from multiple networks: I. Blockmodels of roles and positions, Amer. J. Sociol., 81 (1976), pp. 730–779.
419.
H. D. White, B. Wellman, and N. Nazer, Does citation reflect social structure? Longitudinal evidence from the “Globenet” interdisciplinary research group, preprint, University of Toronto, Toronto, ON, Canada, 2003.
420.
J. G. White, E. Southgate, J. N. Thompson, and S. Brenner, The structure of the nervous system of the nematode C. Elegans, Philos. Trans. Roy. Soc. London, 314 (1986), pp. 1–340.
421.
D. Wilkinson and B. A. Huberman, A Method for Finding Communities of Related Genes, preprint, Stanford University, Stanford, CA, 2002.
422.
R. J. Williams, E. L. Berlow, J. A. Dunne, A.‐L. Barabási, and N. D. Martinez, Two degrees of separation in complex food webs, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 12913–12916.
423.
Arthur Winfree, The geometry of biological time, Interdisciplinary Applied Mathematics, Vol. 12, Springer‐Verlag, 2001xxvi+777
424.
Nicholas Wormald, The asymptotic connectivity of labelled regular graphs, J. Combin. Theory Ser. B, 31 (1981), 156–167
425.
S. H. Yook, H. Jeong, and A.‐L. Barabasi, Modeling the internet’s large‐scale topology, Proc. Natl. Acad. Sci. USA, 99 (2001), pp. 13382–13386.
426.
H. P. Young, The diffusion of innovations in social networks, in The Economy as an Evolving Complex System, Vol. 3, L. E. Blume and S. N. Durlauf, eds., Oxford University Press, Oxford, 2003.
427.
D. H. Zanette, Criticalbehavior of propagation on small‐world networks, Phys. Rev. E, 64 (2001), art. no. 050901.
428.
N. Zekri and J. P. Clerc, Statistical and dynamical study of disease propagation in a small world network, Phys. Rev. E, 64 (2001), art. no. 056115.
429.
J.‐Y. Zhu and H. Zhu, Introducing Small‐World Network Effect to Critical Dynamics, Preprint 0212542 (2002);
available from http://arxiv.org/abs/cond‐mat/.

Information & Authors

Information

Published In

cover image SIAM Review
SIAM Review
Pages: 167 - 256
ISSN (online): 1095-7200

History

Published online: 4 August 2006

MSC codes

  1. 05C75
  2. 05C90
  3. 94C15

Keywords

  1. networks
  2. graph theory
  3. complex systems
  4. computer networks
  5. social networks
  6. random graphs
  7. percolation theory

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By