Abstract

In this paper, we develop asymptotic Asian option hedging methods for the Black--Scholes markets with transaction costs. We first construct classical replication strategies and then, using the Leland approach, propose corresponding modifications for the financial markets with proportional transaction costs. Sufficient conditions are found on the transaction costs implying the asymptotic hedging for the constructed strategies. The pricing problem is also considered. Three cases are studied: the case where the option price is the same as for the hedging problem without transaction costs, the case of increasing volatility, and the case where the option price equals the option price of the “buy and hold” strategy for European call options.

Keywords

  1. Black--Scholes model
  2. Asian options
  3. hedging problem
  4. transaction cost market
  5. asymptotic hedging
  6. Leland strategy
  7. option pricing

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
H. Albrecher and M. Predota, On Asian option pricing for NIG Lévy processes, J. Comput. Appl. Math., 172 (2004), pp. 153--168, https://doi.org/10.1016/j.cam.2004.01.037.
2.
T. Björk, Arbitrage Theory in Continuous Time, Oxford Univ. Press, Oxford, 1998, https://doi.org/10.1093/0198775180.001.0001.
3.
F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), pp. 637--654, https://doi.org/10.1086/260062.
4.
J. M. C. Clark, The representation of functionals of Brownian motion by stochastic integrals, Ann. Math. Statist., 41 (1970), pp. 1282--1295, https://doi.org/10.1214/aoms/1177696903.
5.
R. M. Dudley, Real Analysis and Probability, 2nd ed., Cambridge Stud. Adv. Math. 74, Cambridge Univ. Press, Cambridge, 2002, https://doi.org/10.1017/CBO9780511755347.
6.
D. Dufresne, Bessel processes and Asian options, in Numerical Methods in Finance, GERAD 25th Anniv. Ser. 9, Springer, New York, 2005, pp. 35--57, https://doi.org/10.1007/0-387-25118-9_2.
7.
E. Eberlein, A. Papapantoleon, and A. N. Shiryaev, On the duality principle in option pricing: Semimartingale setting, Finance Stoch., 12 (2008), pp. 265--292, https://doi.org/10.1007/s00780-008-0061-0.
8.
G. Fusai and A. Meucci, Pricing discretely monitored Asian options under Lévy processes, J. Bank. Financ., 32 (2008), pp. 2076--2088, https://doi.org/10.1016/j.jbankfin.2007.12.027.
9.
H. Geman and M. Yor, Bessel processes, Asian options, and perpetuities, Math. Finance, 3 (1993), pp. 349--375, https://doi.org/10.1111/j.1467-9965.1993.tb00092.x.
10.
M. Jacques, On the hedging portfolio of Asian options, Astin Bull., 26 (1996), pp. 165--183, https://doi.org/10.2143/AST.26.2.563217.
11.
Yu. Kabanov and S. Pergamenshchikov, In the insurance business risky investments are dangerous: The case of negative risk sums, Finance Stoch., 20 (2016), pp. 355--379, https://doi.org/10.1007/s00780-016-0292-4.
12.
Yu. Kabanov and M. Safarian, Markets with Transaction Costs. Mathematical Theory, Springer Finance, Springer-Verlag, Berlin, 2009, https://doi.org/10.1007/978-3-540-68121-2.
13.
H. E. Leland, Option pricing and replication with transactions costs, J. Finance, 40 (1985), pp. 1283--1301, https://doi.org/10.1111/j.1540-6261.1985.tb02383.x.
14.
E. Lepinette, Modified Leland's strategy for a constant transaction costs rate, Math. Finance, 22 (2012), pp. 741--752, https://doi.org/10.1111/j.1467-9965.2011.00498.x.
15.
E. Lépinette and T. Tran, Approximate hedging in a local volatility model with proportional transaction costs, Appl. Math. Finance, 21 (2014), pp. 313--341, https://doi.org/10.1080/1350486X.2013.871802.
16.
K. Lott, Ein Verfahren zur Replication von Optionen unter Transaktionkosten in stetiger Zeit, dissertation, Inst. Math. Datenverarbeitung, Univ. Bundeswehr, München, 1993.
17.
T. H. Nguyen and S. Pergamenshchikov, Approximate hedging problem with transaction costs in stochastic volatility markets, Math. Finance, 27 (2017), pp. 832--865, https://doi.org/10.1111/mafi.12094.
18.
T. Nguyen and S. Pergamenschchikov, Approximate hedging with constant proportional transaction costs in financial markets with jumps, Theory Probab. Appl., 65 (2020), pp. 224--248, https://doi.org/10.1137/S0040585X97T989921.
19.
S. Pergamenshchikov, Limit theorem for Leland's strategy, Ann. Appl. Probab., 13 (2003), pp. 1099--1118, https://doi.org/10.1214/aoap/1060202836.
20.
A. A. Shishkova, Calculation of Asian options for the Black--Scholes model, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 51 (2018), pp. 48--63 (in Russian), https://doi.org/10.17223/19988621/51/5.
21.
A. A. Shishkova, The hedging strategy for Asian option, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 56 (2018), pp. 29--41 (in Russian), https://doi.org/10.17223/19988621/56/3.
22.
S. E. Shreve and J. Večeř, Options on a traded account: Vacation calls, vacation puts and passport options, Finance Stoch., 4 (2000), pp. 255--274, https://doi.org/10.1007/s007800050073.
23.
J. Večeř, A new PDE approach for pricing arithmetic average Asian options, J. Comput. Finance, 4 (2001), pp. 105--113, https://doi.org/10.21314/JCF.2001.064.
24.
J. Večeř and M. Xu, Pricing Asian options in a semimartingale model, Quant. Finance, 4 (2004), pp. 170--175, https://doi.org/10.1080/14697680400000021.

Information & Authors

Information

Published In

cover image Theory of Probability & Its Applications
Theory of Probability & Its Applications
Pages: 211 - 230
ISSN (online): 1095-7219

History

Submitted: 12 June 2021
Published online: 2 August 2023

Keywords

  1. Black--Scholes model
  2. Asian options
  3. hedging problem
  4. transaction cost market
  5. asymptotic hedging
  6. Leland strategy
  7. option pricing

Authors

Affiliations

S. M. Pergamenchtchikov

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media

The SIAM Publications Library now uses SIAM Single Sign-On for individuals. If you do not have existing SIAM credentials, create your SIAM account https://my.siam.org.