Abstract

Motivated by an application in neuroimaging, we consider the problem of establishing global minimax lower bound in a high order tensor model. In particular, the methodology we describe provides the global minimax bound for the integral curve estimator proposed in [O. Carmichael and L. Sakhanenko, Linear Algebra Appl., 473 (2015), pp. 377--403] under a semiparametric estimation setting. The theoretical results in this paper guarantee that the estimator used for tracing the complex fiber structure inside a live human brain obtained from high angular resolution diffusion imaging (HARDI) data is not only optimal locally but also optimal globally. The global minimax bound on the asymptotic risk of the estimators thus will provide a quantification of uncertainty for the estimation method in the whole domain of the imaging field. In addition to theoretical results, we also provide a detailed simulation study in order to find the optimal number of gradient directions for the imaging protocols, which we further illustrate with a real data analysis of a live human brain scan to showcase the uncertainty quantification of the estimation method in [O. Carmichael and L. Sakhanenko, Linear Algebra Appl., 473 (2015), pp. 377--403]. Furthermore, based on the global minimax bound, we propose a method for comparing the relative accuracy of several commonly used neuroimaging protocols in diffusion tensor imaging (DTI).

Keywords

  1. global minimax lower bound
  2. semiparametric estimation
  3. magnetic resonance high angular resolution diffusion imaging

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
C. Banerjee, L. Sakhanenko, and D. C. Zhu, Lower bounds for accuracy of estimation in magnetic resonance high angular resolution diffusion imaging data, J. Indian Soc. Probab. Statist., 21 (2020), pp. 1--41, https://doi.org/10.1007/s41096-019-00071-w.
2.
C. Banerjee, L. Sakhanenko, and D. C. Zhu, Global rate optimality of integral curve estimators in high order tensor models: Supplemental material, Theory Probab. Appl., to appear.
3.
O. Carmichael and L. Sakhanenko, Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data, Linear Algebra Appl., 473 (2015), pp. 377--403, https://doi.org/10.1016/j.laa.2014.12.007.
4.
O. Carmichael and L. Sakhanenko, Integral curves from noisy diffusion MRI data with closed-form uncertainty estimates, Stat. Inference Stoch. Process., 19 (2016), pp. 289--319, https://doi.org/10.1007/s11203-015-9126-9.
5.
S.-E. Chang and D. C. Zhu, Neural network connectivity differences in children who stutter, Brain, 136 (2013), pp. 3709--3726, https://doi.org/10.1093/brain/awt275.
6.
C. Chicone, Ordinary Differential Equations with Applications, 2nd ed., Texts Appl. Math. 34, Springer, New York, 2006, https://doi.org/10.1007/0-387-35794-7.
7.
L. de Lathauwer, B. de Moor, and J. Vandewalle, On the best rank-$1$ and rank-$(R_1,R_2,\dots,R_N)$ approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1324--1342, https://doi.org/10.1137/S0895479898346995.
8.
L. Devroye, A Course in Density Estimation, Progr. Probab. Statist. 14, Birkhäuser, Boston, MA, 1987.
9.
T. S. Ferguson, Mathematical Statistics. A Decision Theoretic Approach, Probab. Math. Statist. 1, Academic Press, New York, 1967.
10.
A. Guntuboyina and B. Sen, Global risk bounds and adaptation in univariate convex regression, Probab. Theory Related Fields, 163 (2015), pp. 379--411, https://doi.org/10.1007/s00440-014-0595-3.
11.
R. Hasminskii and I. Ibragimov, On density estimation in the view of Kolmogorov's ideas in approximation theory, Ann. Statist., 18 (1990), pp. 999--1010, https://doi.org/10.1214/aos/1176347736.
12.
I. A. Ibragimov and R. Z. Has'minskii, Statistical Estimation: Asymptotic Theory, Appl. Math. 16, Springer-Verlag, New York, 1981, https://doi.org/10.1007/978-1-4899-0027-2.
13.
I. A. Ibragimov and R. Z. Khas'minskii, Estimation of distribution density, J. Soviet Math., 21 (1983), pp. 40--57, https://doi.org/10.1007/BF01091455.
14.
I. A. Ibragimov and R. Z. Khas'minskii, More on the estimation of distribution densities, J. Soviet Math., 25 (1984), pp. 1155--1165, https://doi.org/10.1007/BF01084794.
15.
A. K. H. Kim and R. J. Samworth, Global rates of convergence in log-concave density estimation, Ann. Statist., 44 (2016), pp. 2756--2779, https://doi.org/10.1214/16-AOS1480.
16.
V. Koltchinskii, L. Sakhanenko, and S. Cai, Integral curves of noisy vector fields and statistical problems in diffusion tensor imaging: Nonparametric kernel estimation and hypotheses testing, Ann. Statist., 35 (2007), pp. 1576--1607, https://doi.org/10.1214/009053607000000073.
17.
D. Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat, Diffusion tensor imaging: Concepts and applications, J. Magn. Reson. Imaging, 13 (2001), pp. 534--546, https://doi.org/10.1002/jmri.1076.
18.
E. Mammen and S. van de Geer, Locally adaptive regression splines, Ann. Statist., 25 (1997), pp. 387--413, https://doi.org/10.1214/aos/1034276635.
19.
G. Ni and Y. Wang, On the best rank-$1$ approximation to higher-order symmetric tensors, Math. Comput. Modelling, 46 (2007), pp. 1345--1352, https://doi.org/10.1016/j.mcm.2007.01.008.
20.
E. Özarslan and T. Mareci, Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging, Magn. Reson. Med., 50 (2003), pp. 955--965, https://doi.org/10.1002/mrm.10596.
21.
G. Raskutti, M. J. Wainwright, and B. Yu, Minimax-optimal rates for sparse additive models over kernel classes via convex programming, J. Mach. Learn. Res., 13 (2012), pp. 389--427.
22.
L. Sakhanenko, A global optimal convergence rate in a model for the diffusion tensor imaging, Theory Probab. Appl., 55 (2011), pp. 77--90, https://doi.org/10.1137/S0040585X97984619.
23.
L. Sakhanenko, How to choose the number of gradient directions for estimation problems from noisy diffusion tensor data, in Contemporary Developments in Statistical Theory, a Festschrift for Hira Lal Koul, Springer Proc. Math. Stat. 68, Springer, Cham, 2014, pp. 305--310, https://doi.org/10.1007/978-3-319-02651-0_19.
24.
L. Sakhanenko and M. DeLaura, A comparison study of statistical tractography methodologies for diffusion tensor imaging, Int. J. Stat. Adv. Theory Appl., 1 (2017), pp. 93--110.
25.
C. J. Stone, Optimal global rates of convergence for nonparametric regression, Ann. Statist., 10 (1982), pp. 1040--1053, https://doi.org/10.1214/aos/1176345969.
26.
M. J. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint, Camb. Ser. Stat. Probab. Math. 48, Cambridge Univ. Press, Cambridge, 2019, https://doi.org/10.1017/9781108627771.
27.
L. Ying, Y. M. Zou, D. P. Klemer, and J.-J. Wang, Determination of fiber orientation in MRI diffusion tensor imaging based on higher-order tensor decomposition, in Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Lyon, 2007), IEEE, Piscataway, NJ, 2007, pp. 2065--2068, https://doi.org/10.1109/IEMBS.2007.4352727.
28.
D. C. Zhu and S. Majumdar, Integration of resting-state FMRI and diffusion-weighted MRI connectivity analyses of the human brain: Limitations and improvement, J. Neuroimaging, 24 (2014), pp. 176--186, https://doi.org/10.1111/j.1552-6569.2012.00768.x.
29.
D. C. Zhu, S. Majumdar, I. O. Korolev, K. L. Berger, and A. C. Bozoki, Alzheimer's disease and amnestic mild cognitive impairment weaken connections within the default mode network: A multi-modal imaging study, J. Alzheimer's Dis., 34 (2013), pp. 969--984, https://doi.org/10.3233/JAD-121879.

Information & Authors

Information

Published In

cover image Theory of Probability & Its Applications
Theory of Probability & Its Applications
Pages: 250 - 266
ISSN (online): 1095-7219

History

Submitted: 18 October 2021
Published online: 2 August 2023

Keywords

  1. global minimax lower bound
  2. semiparametric estimation
  3. magnetic resonance high angular resolution diffusion imaging

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media