Abstract

In this paper, we study the local discontinuous Galerkin (LDG) methods for nonlinear, time-dependent convection-diffusion systems. These methods are an extension of the Runge--Kutta discontinuous Galerkin (RKDG) methods for purely hyperbolic systems to convection-diffusion systems and share with those methods their high parallelizability, high-order formal accuracy, and easy handling of complicated geometries for convection-dominated problems. It is proven that for scalar equations, the LDG methods are L2-stable in the nonlinear case. Moreover, in the linear case, it is shown that if polynomials of degree k are used, the methods are kth order accurate for general triangulations; although this order of convergence is suboptimal, it is sharp for the LDG methods. Preliminary numerical examples displaying the performance of the method are shown.

MSC codes

  1. 65M60
  2. 65M12
  3. 65M15

Keywords

  1. discontinuous finite elements
  2. convection-diffusion problems

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Todd Arbogast, Mary Wheeler, A characteristics‐mixed finite element method for advection‐dominated transport problems, SIAM J. Numer. Anal., 32 (1995), 404–424
2.
H. L. Atkins and C.‐W. Shu, Quadrature‐free implementation of discontinuous Galerkin methods for hyperbolic equations, AIAA J., 36 (1998), pp. 775–782.
3.
Garth Baker, Wadi Jureidini, Ohannes Karakashian, Piecewise solenoidal vector fields and the Stokes problem, SIAM J. Numer. Anal., 27 (1990), 1466–1485
4.
F. Bassi and S. Rebay, High‐order accurate discontinuous finite element solution of the 2D Euler equations, J. Comput. Phys., to appear.
5.
F. Bassi, S. Rebay, A high‐order accurate discontinuous finite element method for the numerical solution of the compressible Navier‐Stokes equations, J. Comput. Phys., 131 (1997), 267–279
6.
F. Bassi, S. Rebay, M. Savini, G. Mariotti, and S. Pedinotti, A high‐order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in Proc. Second European Conference ASME on Turbomachinery Fluid Dynamics and Thermodynamics, 1995.
7.
K. S. Bey and J. T. Oden, A Runge‐Kutta discontinuous Galerkin finite element method for high speed flows, AIAA 10th Computational Fluid Dynamics Conference, Honolulu, HI, June 24–27, 1991.
8.
Rupak Biswas, Karen Devine, Joseph Flaherty, Parallel, adaptive finite element methods for conservation laws, Proceedings of the Third ARO Workshop on Adaptive Methods for Partial Differential Equations (Troy, NY, 1992), Vol. 14, 1994, 255–283
9.
Z. Chen, B. Cockburn, J. Jerome, and C.‐W. Shu, Mixed‐RKDG finite element method for the drift‐diffusion semiconductor device equations, VLSI Design, 3 (1995), pp. 145–158.
10.
Z. Chen, B. Cockburn, C. Gardner, and J. Jerome, Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode, J. Comput. Phys., 117 (1995), pp. 274–280.
11.
P. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, Amsterdam, 1975.
12.
Bernardo Cockburn, Chi‐Wang Shu, The Runge‐Kutta local projection P1‐discontinuous‐Galerkin finite element method for scalar conservation laws, RAIRO Modél. Math. Anal. Numér., 25 (1991), 337–361
13.
Bernardo Cockburn, Chi‐Wang Shu, TVB Runge‐Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp., 52 (1989), 411–435
14.
Bernardo Cockburn, San Lin, Chi‐Wang Shu, TVB Runge‐Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One‐dimensional systems, J. Comput. Phys., 84 (1989), 90–113
15.
Bernardo Cockburn, Suchung Hou, Chi‐Wang Shu, The Runge‐Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp., 54 (1990), 545–581
16.
Bernardo Cockburn, Chi‐Wang Shu, The Runge‐Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, J. Comput. Phys., 141 (1998), 199–224
17.
Clint Dawson, Godunov‐mixed methods for advection‐diffusion equations in multidimensions, SIAM J. Numer. Anal., 30 (1993), 1315–1332
18.
H. deCougny, K. Devine, J. Flaherty, R. Loy, C. Özturan, M. Shephard, Load balancing for the parallel adaptive solution of partial differential equations, Appl. Numer. Math., 16 (1994), 157–182, A Festschrift to honor Professor Robert Vichnevetsky on his 65th birthday
19.
M. Delfour, W. Hager, F. Trochu, Discontinuous Galerkin methods for ordinary differential equations, Math. Comp., 36 (1981), 455–473
20.
Karen Devine, Joseph Flaherty, Raymond Loy, Stephen Wheat, Parallel partitioning strategies for the adaptive solution of conservation laws, IMA Vol. Math. Appl., Vol. 75, Springer, New York, 1995, 215–242
21.
K. D. Devine, J. E. Flaherty, S. R. Wheat, and A. B. Maccabe, A massively parallel adaptive finite element method with dynamic load balancing, in Proceeding Supercomputing ’93, pp. 2–11.
22.
Kenneth Eriksson, Claes Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem, SIAM J. Numer. Anal., 28 (1991), 43–77
23.
Kenneth Eriksson, Claes Johnson, Adaptive finite element methods for parabolic problems. II. Optimal error estimates in LL2 and LL, SIAM J. Numer. Anal., 32 (1995), 706–740
24.
Kenneth Eriksson, Claes Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems, SIAM J. Numer. Anal., 32 (1995), 1729–1749
25.
Kenneth Eriksson, Claes Johnson, Adaptive finite element methods for parabolic problems. V. Long‐time integration, SIAM J. Numer. Anal., 32 (1995), 1750–1763
26.
Kenneth Eriksson, Claes Johnson, Vidar Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modél. Math. Anal. Numér., 19 (1985), 611–643
27.
Pierre Jamet, Galerkin‐type approximations which are discontinuous in time for parabolic equations in a variable domain, SIAM J. Numer. Anal., 15 (1978), 912–928
28.
Guang Jiang, Chi‐Wang Shu, On a cell entropy inequality for discontinuous Galerkin methods, Math. Comp., 62 (1994), 531–538
29.
C. Johnson, J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp., 46 (1986), 1–26
30.
P. Lasaint, P.‐A. Raviart, On a finite element method for solving the neutron transport equation, Math. Res. Center, Univ. of Wisconsin‐Madison, Academic Press, New York, 1974, 0–0, 89–123. Publication No. 33
31.
R. B. Lowrie, P. L. Roe, and B. vanLeer, A space‐time discontinuous Galerkin method for the time accurate numerical solution of hyperbolic conservation laws, 12th AIAA Computational Fluid Dynamics Conference, San Diego, CA, June 19–22, 1995.
32.
Ch. Makridakis, I. Babuška, On the stability of the discontinuous Galerkin method for the heat equation, SIAM J. Numer. Anal., 34 (1997), 389–401
33.
J. Oden, Ivo Babuška, Carlos Baumann, A discontinuous hp finite element method for diffusion problems, J. Comput. Phys., 146 (1998), 491–519
34.
Stanley Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal., 21 (1984), 217–235
35.
C. Özturan, H. L. deCougny, M. S. Shephard, and J. E. Flaherty, Parallel adaptive mesh refinement and redistribution on distributed memory computers, Comput. Methods Appl. Mech. Engrg., 119 (1994), pp. 123–137.
36.
Todd Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. Numer. Anal., 28 (1991), 133–140
37.
W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory report LA‐UR‐73‐479, Los Alamos, NM, 1973.
38.
Gerard Richter, An optimal‐order error estimate for the discontinuous Galerkin method, Math. Comp., 50 (1988), 75–88
39.
Chi‐Wang Shu, Total‐variation‐diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9 (1988), 1073–1084
40.
Chi‐Wang Shu, Stanley Osher, Efficient implementation of essentially nonoscillatory shock‐capturing schemes, J. Comput. Phys., 77 (1988), 439–471
41.
C.‐W. Shu and S. Osher, Efficient implementation of essentially non‐oscillatory shock capturing schemes, II, J. Comp. Phys., 83 (1989), pp. 32–78.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 2440 - 2463
ISSN (online): 1095-7170

History

Published online: 25 July 2006

MSC codes

  1. 65M60
  2. 65M12
  3. 65M15

Keywords

  1. discontinuous finite elements
  2. convection-diffusion problems

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By