Abstract

In this paper we develop a concrete and fully implementable approach to the optimization of functionally generated portfolios in stochastic portfolio theory. The main idea is to optimize over a family of rank-based portfolios parameterized by an exponentially concave function on the unit interval. This choice can be motivated by the long term stability of the capital distribution observed in large equity markets and allows us to circumvent the curse of dimensionality. The resulting optimization problem, which is convex, allows for various regularizations and constraints to be imposed on the generating function. We prove an existence and uniqueness result for our optimization problem and provide a stability estimate in terms of a Wasserstein metric of the input measure. Then we formulate a discretization which can be implemented numerically using available software packages and analyze its approximation error. Finally, we present empirical examples using CRSP data from the U.S. stock market, including the performance of the portfolios allowing for dividends, defaults, and transaction costs.

Keywords

  1. stochastic portfolio theory
  2. portfolio optimization
  3. functionally generated portfolio
  4. capital distribution
  5. convex optimization
  6. exponentially concave function
  7. Wasserstein metric

MSC codes

  1. 91G10
  2. 91G60

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
A. Al-Aradi and S. Jaimungal, Outperformance and tracking: Dynamic asset allocation for active and passive portfolio management, Appl. Math. Finance, 25 (2018), pp. 268--294.
2.
A. L. Allan, C. Cuchiero, C. Liu, and D. J. Prömel, Model-Free Portfolio Theory: A Rough Path Approach, preprint, https://arxiv.org/abs/2109.01843, 2021.
3.
A. Banner, B. R. Fernholz, V. Papathanakos, J. Ruf, and D. Schofield, Diversification, volatility, and surprising alpha, J. Invest. Consult., 19 (2019), pp. 23--30.
4.
A. D. Banner, R. Fernholz, and I. Karatzas, Atlas models of equity markets, Ann. Appl. Probab., 15 (2005), pp. 2296--2330.
5.
P. Baxendale and T.-K. L. Wong, Random concave functions, Ann. Appl. Probab., 32 (2022), pp. 812--852.
6.
E. Bayraktar, Y.-J. Huang, and Q. Song, Outperforming the market portfolio with a given probability, Ann. Appl. Probab., 22 (2012), pp. 1465--1494.
7.
Center for Research in Security Prices (CRSP), CRSP US Stock Database, http://www.crsp.org/products/research-products/crsp-us-stock-databases, 2021.
8.
S. Chatterjee and S. Pal, A phase transition behavior for Brownian motions interacting through their ranks, Probab. Theory Related Fields, 147 (2010), pp. 123--159.
9.
H. N. Chau and P. Tankov, Market models with optimal arbitrage, SIAM J. Financial Math., 6 (2015), pp. 66--85, https://doi.org/10.1137/140953666.
10.
T. M. Cover, Universal portfolios, Math. Finance, 1 (1991), pp. 1--29.
11.
C. Cuchiero, W. Schachermayer, and T.-K. L. Wong, Cover's universal portfolio, stochastic portfolio theory, and the numéraire portfolio, Math. Finance, 29 (2019), pp. 773--803.
12.
P. J. Davis, Interpolation and Approximation, Dover, New York, 1975.
13.
J. J. Egozcue, J. L. Díaz-Barrero, and V. Pawlowsky-Glahn, Hilbert space of probability density functions based on Aitchison geometry, Acta Math. Sin. (Engl. Ser.), 22 (2006), pp. 1175--1182.
14.
D. Fernholz and I. Karatzas, On optimal arbitrage, Ann. Appl. Probab., 20 (2010), pp. 1179--1204.
15.
D. Fernholz and I. Karatzas, Optimal arbitrage under model uncertainty, Ann. Appl. Probab., 21 (2011), pp. 2191--2225.
16.
E. R. Fernholz, Stochastic Portfolio Theory, Springer, New York, 2002.
17.
R. Fernholz, Portfolio generating functions, in Quantitative Analysis in Financial Markets: Collected Papers of the New York University Mathematical Finance Seminar, World Scientific, Singapore, 1999, pp. 344--367.
18.
R. Fernholz and I. Karatzas, Relative arbitrage in volatility-stabilized markets, Ann. Finance, 1 (2005), pp. 149--177.
19.
R. Fernholz and I. Karatzas, Stochastic portfolio theory: An overview, in Handbook of Numerical Analysis, Handb. Numer. Anal. 15, P. G. Ciarlet, ed., Elsevier, Amsterdam, 2009, pp. 89--167.
20.
R. Flamary and N. Courty, POT Python Optimal Transport Library, https://pythonot.github.io/, 2017.
21.
M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs, in Recent Advances in Learning and Control, Lect. Notes Control Inf. Sci. 371, V. Blondel, S. Boyd, and H. Kimura, eds., Springer, London, 2008, pp. 95--110.
22.
M. Grant and S. Boyd, CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1, http://cvxr.com/cvx, 2014.
23.
T. Ichiba and T. Yang, Relative Arbitrage Opportunities in N Investors and Mean-Field Regimes, preprint, https://arxiv.org/abs/2006.15158, 2020.
24.
D. Itkin and M. Larsson, Robust asymptotic growth in stochastic portfolio theory under long-only constraints, Math. Finance, 32 (2022), pp. 114--171.
25.
I. Karatzas and D. Kim, Open markets, Math. Finance, 31 (2021), pp. 1111--1161.
26.
I. Karatzas and D. Kim, Trading strategies generated pathwise by functions of market weights, Finance Stoch., 24 (2020), pp. 423--463.
27.
I. Karatzas and J. Ruf, Trading strategies generated by Lyapunov functions, Finance Stoch., 21 (2017), pp. 753--787.
28.
C. Kardaras and S. Robertson, Robust maximization of asymptotic growth, Ann. Appl. Probab., 22 (2012), pp. 1576--1610.
29.
C. Kardaras and S. Robertson, Ergodic robust maximization of asymptotic growth, Ann. Appl. Probab., 31 (2021), pp. 1787--1819.
30.
P. Mijatovic, Beating the Market with Generalized Generating Portfolios, preprint, https://arxiv.org/abs/2101.07084, 2021.
31.
MOSEK ApS, The MOSEK Optimization Toolbox for MATLAB Manual, Version $9.0$, http://docs.mosek.com/9.0/toolbox/index.html, 2019.
32.
S. Pal, Analysis of market weights under volatility-stabilized market models, Ann. Appl. Probab., 21 (2011), pp. 1180--1213.
33.
S. Pal, Exponentially concave functions and high dimensional stochastic portfolio theory, Stochastic Process. Appl., 129 (2019), pp. 3116--3128.
34.
S. Pal and T.-K. L. Wong, Energy, Entropy, and Arbitrage, preprint, https://arxiv.org/abs/1308.5376, 2013.
35.
S. Pal and T.-K. L. Wong, The geometry of relative arbitrage, Math. Financ. Econ., 10 (2016), pp. 263--293.
36.
S. Pal and T.-K. L. Wong, Exponentially concave functions and a new information geometry, Ann. Probab., 46 (2018), pp. 1070--1113.
37.
G. Peyré and M. Cuturi, Computational optimal transport, Found. Trends Mach. Learn., 11 (2019), pp. 355--607.
38.
J. Ruf, Hedging under arbitrage, Math. Finance, 23 (2013), pp. 297--317.
39.
J. Ruf and K. Xie, Generalised Lyapunov functions and functionally generated trading strategies, Appl. Math. Finance, 26 (2019), pp. 293--327.
40.
J. Ruf and K. Xie, The impact of proportional transaction costs on systematically generated portfolios, SIAM J. Financial Math., 11 (2020), pp. 881--896, https://doi.org/10.1137/19M1282313.
41.
Y.-L. K. Samo and A. Vervuurt, Stochastic portfolio theory: A machine learning perspective, in Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, 2016, pp. 657--665.
42.
B. H. Taljaard and E. Maré, Why has the equal weight portfolio underperformed and what can we do about it?, Quant. Finance, 21 (2021), pp. 1855--1868.
43.
C. Villani, Topics in Optimal Transportation, American Mathematical Society, Providence, RI, 2003.
44.
T.-K. L. Wong, Optimization of relative arbitrage, Ann. Finance, 11 (2015), pp. 345--382.
45.
T.-K. L. Wong, Universal Portfolios in Stochastic Portfolio Theory, preprint, https://arxiv.org/abs/1510.02808, 2015.
46.
T.-K. L. Wong, Logarithmic divergences from optimal transport and Rényi geometry, Inf. Geom., 1 (2018), pp. 39--78.
47.
T.-K. L. Wong, Information geometry in portfolio theory, in Geometric Structures of Information, Springer, Cham, 2019, pp. 105--136.
48.
K. Xie, Functionally Generated Portfolios in Stochastic Portfolio Theory, Ph.D. thesis, University College London, London, UK, 2020.
49.
K. Xie, Leakage of rank-dependent functionally generated trading strategies, Ann. Finance, 16 (2020), pp. 573--591.

Information & Authors

Information

Published In

cover image SIAM Journal on Financial Mathematics
SIAM Journal on Financial Mathematics
Pages: 576 - 618
ISSN (online): 1945-497X

History

Submitted: 5 May 2021
Accepted: 23 January 2022
Published online: 5 May 2022

Keywords

  1. stochastic portfolio theory
  2. portfolio optimization
  3. functionally generated portfolio
  4. capital distribution
  5. convex optimization
  6. exponentially concave function
  7. Wasserstein metric

MSC codes

  1. 91G10
  2. 91G60

Authors

Affiliations

Funding Information

Natural Sciences and Engineering Research Council of Canada https://doi.org/10.13039/501100000038 : RGPIN-2019-04419, CGSD3-535625-2019

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media