Abstract

In this paper, we develop a uniform robust weak Galerkin finite element scheme for Brinkman equations. The major idea for achieving uniform energy-error estimate is to use a divergence preserving velocity reconstruction operator in the discretization. The optimal convergence results for velocity and pressure have been established in this paper. Finally, numerical examples are presented for validating the theoretical conclusions.

Keywords

  1. weak Galerkin
  2. finite element methods
  3. Brinkman equations
  4. divergence preserving
  5. robust error estimate

MSC codes

  1. Primary
  2. 65N15
  3. 65N30; Secondary
  4. 35B45
  5. 35J50
  6. 35J35

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
V. Anaya, G. Gatica, D. Mora, and R. Ruiz-Baier, An augmented velocity-vorticity pressure formulation for the Brinkman equations, Internat. J. Numer. Methods Fluids, 79 (2015), pp. 109--137.
2.
C. Brennecke, A. Linke, C. Merdon, and J. Schöberl, Optimal and pressure-independent $L^2$ velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions, J. Comput. Math., 33 (2015), pp. 191--208.
3.
E. Burman and P. Hansbo, Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem, Methods Partial Differential Equations, 21 (2005), pp. 986--997.
4.
E. Burman and P.Hansbo, A unified stabilized method for Stokers' and Darcy's equations, J. Comput. Appl. Math., 198 (2007), pp. 35--71.
5.
E. Burman, Pressure projection stabilizations for Galerkin approximations of Stokes and Darcy's problem, Numer Methods Partial Differ. Equ., 24 (2008), pp. 127--143.
6.
M. Correa and A. Loula, A unified mixed formulation naturally coupling Stokes and Darcy flows, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 2710--2722.
7.
C. DÁngelo and P. Zunino, A finite element method based on weighted interior penalties for heterogeneous incompressible flows, SIAM J. Numer. Anal., 47 (2009), pp. 3990--4020.
8.
G. Fu, Y. Jin, and W. Qiu, Parameter-free superconvergent H(div)-conforming HDG methods for the Brinkman equations, IMA J. Numer. Anal., 39 (2019), pp. 957--982.
9.
G. Gatica, L. Gatica, and F. Sequeira, Analysis of an augmented pseudostress- based mixed formulation for a nonlinear Brinkman model of porous media flow, Comput. Methods Appl. Mech. Engrg., 289 (2015), pp. 104--130.
10.
J. Guzman and M. Neilan, A family of nonconforming elements for the Brinkman problem, IMA J. Numer. Anal., 32 (2012), pp. 1484--1508.
11.
A. Hannukainen, M. Juntunen, and R. Stenberg, Computations with finite element methods for the Brinkman problem, Comput. Geosci., 15 (2011), pp. 155--166.
12.
P. Hansbo and M. Juntunen, Weakly imposed Dirichlet boundary conditions for the Brinkman model of porous media flow, Appl. Numer. Math., 59 (2009), pp. 1274--1289.
13.
J. Howell, M. Neilan, and N. Walkington, A dual-mixed finite element method for the Brinkman problem, SMAI J. Comput. Math., 2 (2016), pp. 1--17.
14.
X. Hu, L. Mu, and X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations, J. Comput. Appl. Math., 362 (2019), pp. 614--625.
15.
P. Lederer, Pressure-robust discretizations for Navier-Stokes equations: Divergence-free reconstruction for Taylor-Hood elements and high order Hybrid Discontinuous Galerkin methods, master's thesis, Vienna Technical University, 2016.
16.
P. Lederer and J. Schöberl, Polynomial robust stability analysis for h(div)-conforming finite elements for the stokes equations, IMA J. Numer. Anal., 38 (2018), pp. 1832--1860.
17.
A. Linke, A divergence-free velocity reconstruction for incompressible flows, C. R. Math. Acad. Sci. Paris, 350 (2012), pp. 837--840.
18.
A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg., 268 (2014), pp. 782--800.
19.
A. Linke, G. Matthies, and L. Tobiska, Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors, ESAIM: M2AN, 50 (2016), pp. 289--309.
20.
A. Linke and C. Merdon, Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 311 (2016), pp. 304--326.
21.
J. Liu, S. Tavener, and Z. Wang, Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes, SIAM J. Sci. Comput., 40 (2018), pp. B1229--1252.
22.
J. Könnö and R. Stenberg, Non-conforming finite element method for the Brinkman problem, in Numerical Mathematics and Advanced Applications 2009, Springer, Berlin, Heidelberg, 2010, pp. 515--522.
23.
J. Könnö and R. Stenberg, Numerical computations with H(div)-finite elements for the Brinkman problem, Comput. Geosci., 16 (2012), pp. 139--158.
24.
K. Mardal, X. Tai, and R. Winther, A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal., 40 (2002), pp. 1605--1631.
25.
L. Mu, J. Wang, Y. Wang, and X. Ye, A weak Galerkin Mixed finite element method for biharmonic equations, in Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer, New York, NY, 2013, pp. 247--277.
26.
L. Mu, X. Ye, A Simple Finite Element Method for the Stokes Equations, Adv. Comput. Math., 43 (2017), pp. 1305--1324.
27.
L. Mu, J. Wang, and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. Comput. Phys., 273 (2014), pp. 327--342.
28.
L. Mu, J. Wang, X. Ye, and S. Zhang, A Weak Galerkin Finite Element Method for the Maxwell Equations, J. Sci. Comput., 65 (2015), pp. 363--386.
29.
Di Pietro, A. Ern, A. Linke, F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem, Comput. Methods Appl. Mech. Engrg, 306 (2016), pp. 175--195.
30.
P. Vassilevski and U. Villa, A mixed formulation for the Brinkman problem, SIAM J. Numer. Anal., 52 (2014), pp. 258--281.
31.
J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comp. and Appl. Math., 241 (2013), pp. 103--115.
32.
J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), pp. 2101--2126.
33.
J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42.1 (2016), pp. 155--174.
34.
X. Wang, Q. Zhai, and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), pp. 13--24.
35.
X. Xie, J. Xu, and G. Xue, Uniformly stable finite element methods for Darcy-Stokes-Brinkman models, J. Comput. Math., 26 (2008), pp. 437--455.
36.
Q. Zhai, R. Zhang, and L. Mu, A new weak Galerkin finite element scheme for the Brinkman model, Commun. Comput. Phys., 19 (2016), pp. 1409--1434.

Information & Authors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis
Pages: 1422 - 1439
ISSN (online): 1095-7170

History

Submitted: 26 August 2019
Accepted: 10 March 2020
Published online: 11 May 2020

Keywords

  1. weak Galerkin
  2. finite element methods
  3. Brinkman equations
  4. divergence preserving
  5. robust error estimate

MSC codes

  1. Primary
  2. 65N15
  3. 65N30; Secondary
  4. 35B45
  5. 35J50
  6. 35J35

Authors

Affiliations

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media