Methods and Algorithms for Scientific Computing

Efficient Adaptive Multilevel Stochastic Galerkin Approximation Using Implicit A Posteriori Error Estimation

Abstract

Partial differential equations (PDEs) with inputs that depend on infinitely many parameters pose serious theoretical and computational challenges. Sophisticated numerical algorithms that automatically determine which parameters need to be activated in the approximation space in order to estimate a quantity of interest to a prescribed error tolerance are needed. For elliptic PDEs with parameter-dependent coefficients, stochastic Galerkin finite element methods (SGFEMs) have been well studied. Under certain assumptions, it can be shown that there exists a sequence of SGFEM approximation spaces for which the energy norm of the error decays to zero at a rate that is independent of the number of input parameters. However, it is not clear how to adaptively construct these spaces in a practical and computationally efficient way. We present a new adaptive SGFEM algorithm that tackles elliptic PDEs with parameter-dependent coefficients quickly and efficiently. We consider approximation spaces with a multilevel structure---where each solution mode is associated with a finite element space on a potentially different mesh---and use an implicit a posteriori error estimation strategy to steer the adaptive enrichment of the space. At each step, the components of the error estimator are used to assess the potential benefits of a variety of enrichment strategies, including whether or not to activate more parameters. No marking or tuning parameters are required. Numerical experiments for a selection of test problems demonstrate that the new method performs optimally in that it generates a sequence of approximations for which the estimated energy error decays to zero at the same rate as the error for the underlying finite element method applied to the associated parameter-free problem.

Keywords

  1. adaptivity
  2. finite element methods
  3. stochastic Galerkin approximation
  4. multilevel methods
  5. a posteriori error estimation

MSC codes

  1. 35R60
  2. 60H35
  3. 65N30
  4. 65F10

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (N. Y.), Wiley-Interscience [John Wiley & Sons], New York, 2000, https://doi.org/10.1002/9781118032824.
2.
I. Babuška, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800--825, https://doi.org/10.1137/S0036142902418680.
3.
A. Bespalov, C. E. Powell, and D. Silvester, Stochastic IFISS (S-IFISS) version 1.1, 2016, available online at http://www.manchester.ac.uk/ifiss/s-ifiss1.0.tar.gz.
4.
A. Bespalov, C. E. Powell, and D. Silvester, Energy norm a posteriori error estimation for parametric operator equations, SIAM J. Sci. Comput., 36 (2014), pp. A339--A363, https://doi.org/10.1137/130916849.
5.
A. Bespalov and L. Rocchi, Efficient adaptive algorithms for elliptic PDEs with random data, SIAM/ASA J. Uncertain. Quantif., 6 (2018), pp. 243--272, https://doi.org/10.1137/17M1139928.
6.
A. Bespalov and D. Silvester, Efficient adaptive stochastic Galerkin methods for parametric operator equations, SIAM J. Sci. Comput., 38 (2016), pp. A2118--A2140, https://doi.org/10.1137/15M1027048.
7.
M. Bieri, R. Andreev, and C. Schwab, Sparse tensor discretization of elliptic SPDEs, SIAM J. Sci. Comput., 31 (2009), pp. 4281--4304, https://doi.org/10.1137/090749256.
8.
M. Bieri and C. Schwab, Sparse high order FEM for elliptic sPDEs, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 1149--1170, https://doi.org/10.1016/j.cma.2008.08.019.
9.
J. Charrier, R. Scheichl, and A. L. Teckentrup, Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods, SIAM J. Numer. Anal., 51 (2013), pp. 322--352, https://doi.org/10.1137/110853054.
10.
A. Chkifa, A. Cohen, and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs, J. Math. Pures Appl. (9), 103 (2015), pp. 400--428, https://doi.org/10.1016/j.matpur.2014.04.009.
11.
K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci., 14 (2011), pp. 3--15, https://doi.org/10.1007/s00791-011-0160-x.
12.
A. Cohen, R. DeVore, and C. Schwab, Convergence rates of best $N$-term Galerkin approximations for a class of elliptic sPDEs, Found. Comput. Math., 10 (2010), pp. 615--646, https://doi.org/10.1007/s10208-010-9072-2.
13.
A. Cohen, R. DeVore, and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE's, Anal. Appl., 9 (2011), pp. 11--47, https://doi.org/10.1142/S0219530511001728.
14.
A. J. Crowder and C. E. Powell, CBS constants & their role in error estimation for stochastic Galerkin finite element methods, J. Sci. Comput., 77 (2018), pp. 1030--1054, https://doi.org/10.1007/s10915-018-0736-4.
15.
M. K. Deb, I. M. Babuška, and J. T. Oden, Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 6359--6372, https://doi.org/10.1016/S0045-7825(01)00237-7.
16.
W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), pp. 1106--1124, https://doi.org/10.1137/0733054.
17.
M. Eigel, C. J. Gittelson, C. Schwab, and E. Zander, Adaptive stochastic Galerkin FEM, Comput. Methods Appl. Mech. Engrg., 270 (2014), pp. 247--269, https://doi.org/10.1016/j.cma.2013.11.015.
18.
M. Eigel, C. J. Gittelson, C. Schwab, and E. Zander, A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes, ESAIM Math. Model. Numer. Anal., 49 (2015), pp. 1367--1398, https://doi.org/10.1051/m2an/2015017.
19.
M. Eigel and C. Merdon, Local equilibration error estimators for guaranteed error control in adaptive stochastic higher-order Galerkin finite element methods, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 1372--1397, https://doi.org/10.1137/15M102188X.
20.
O. G. Ernst and E. Ullmann, Stochastic Galerkin matrices, SIAM J. Matrix Anal. Appl., 31 (2009/10), pp. 1848--1872, https://doi.org/10.1137/080742282.
21.
R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, 1991, https://doi.org/10.1007/978-1-4612-3094-6.
22.
C. J. Gittelson, An adaptive stochastic Galerkin method for random elliptic operators, Math. Comp., 82 (2013), pp. 1515--1541, https://doi.org/10.1090/S0025-5718-2013-02654-3.
23.
C. J. Gittelson, Convergence rates of multilevel and sparse tensor approximations for a random elliptic PDE, SIAM J. Numer. Anal., 51 (2013), pp. 2426--2447, https://doi.org/10.1137/110826539.
24.
A.-L. Haji-Ali, F. Nobile, L. Tamellini, and R. Tempone, Multi-index stochastic collocation convergence rates for random PDEs with parametric regularity, Found. Comput. Math., 16 (2016), pp. 1555--1605, https://doi.org/10.1007/s10208-016-9327-7.
25.
A.-L. Haji-Ali, F. Nobile, L. Tamellini, and R. Tempone, Multi-index stochastic collocation for random PDEs, Comput. Methods Appl. Mech. Engrg., 306 (2016), pp. 95--122, https://doi.org/10.1016/j.cma.2016.03.029.
26.
G. J. Lord, C. E. Powell, and T. Shardlow, An Introduction to Computational Stochastic PDEs, Cambridge Texts Appl. Math., Cambridge University Press, New York, 2014, https://doi.org/10.1017/CBO9781139017329.
27.
C. E. Powell and H. C. Elman, Block-diagonal preconditioning for spectral stochastic finite-element systems, IMA J. Numer. Anal., 29 (2009), pp. 350--375, https://doi.org/10.1093/imanum/drn014.
28.
I. Pultarová, Adaptive algorithm for stochastic Galerkin method, Appl. Math., 60 (2015), pp. 551--571, https://doi.org/10.1007/s10492-015-0111-9.
29.
A. L. Teckentrup, P. Jantsch, C. G. Webster, and M. Gunzburger, A multilevel stochastic collocation method for partial differential equations with random input data, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 1046--1074, https://doi.org/10.1137/140969002,.
30.
R. A. Todor and C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients, IMA J. Numer. Anal., 27 (2007), pp. 232--261, https://doi.org/10.1093/imanum/drl025

Information & Authors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing
Pages: A1681 - A1705
ISSN (online): 1095-7197

History

Submitted: 14 June 2018
Accepted: 5 March 2019
Published online: 21 May 2019

Keywords

  1. adaptivity
  2. finite element methods
  3. stochastic Galerkin approximation
  4. multilevel methods
  5. a posteriori error estimation

MSC codes

  1. 35R60
  2. 60H35
  3. 65N30
  4. 65F10

Authors

Affiliations

Funding Information

Isaac Newton Institute for Mathematical Sciences https://doi.org/10.13039/100012112
Engineering and Physical Sciences Research Council https://doi.org/10.13039/501100000266 : EP/P013317/1, EP/P013791/1, EP/K032208/1
Simons Foundation https://doi.org/10.13039/100000893

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media