Abstract

We study the computational complexity and variance of multilevel best linear unbiased estimators introduced in [D. Schaden and E. Ullmann, SIAM/ASA J. Uncertain. Quantif., 8 (2020), pp. 601--635]. We specialize the results in this work to PDE-based models that are parameterized by a discretization quantity, e.g., the finite element mesh size. In particular, we investigate the asymptotic complexity of the so-called sample allocation optimal best linear unbiased estimators (SAOBs). These estimators have the smallest variance given a fixed computational budget. However, SAOBs are defined implicitly by solving an optimization problem and are difficult to analyze. Alternatively, we study a class of auxiliary estimators based on the Richardson extrapolation of the parametric model family. This allows us to provide an upper bound for the complexity of the SAOBs, showing that their complexity is optimal within a certain class of linear unbiased estimators. Moreover, the complexity of the SAOBs is not larger than the complexity of multilevel Monte Carlo. The theoretical results are illustrated by numerical experiments with an elliptic PDE.

Keywords

  1. uncertainty quantification
  2. partial differential equation
  3. Richardson extrapolation
  4. Monte Carlo
  5. multilevel Monte Carlo

MSC codes

  1. 35R60
  2. 62J05
  3. 62F12
  4. 65N30
  5. 65C05

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M. Asadzadeh, A. H. Schatz, and W. Wendland, A new approach to Richardson extrapolation in the finite element method for second order elliptic problems, Math. Comp., 78 (2009), pp. 1951--1973, https://doi.org/10.1090/S0025-5718-09-02241-8.
2.
H. Blum, Q. Lin, and R. Rannacher, Asymptotic error expansion and Richardson extrapolation for linear finite elements, Numer. Math., 49 (1986), pp. 11--37, https://doi.org/10.1007/BF01389427.
3.
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK, 2004, https://doi.org/10.1017/CBO9780511804441.
4.
C. Brezinski, Convergence acceleration during the $20$th century, J. Comput. Appl. Math. 122, (2000), pp. 1--21, https://doi.org/10.1016/S0377-0427(00)00360-5.
5.
R. Bulirsch and J. Stoer, Numerical treatment of ordinary differential equations by extrapolation methods, Numer. Math., 8 (1966), pp. 1--13, https://doi.org/10.1007/BF02165234.
6.
K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients, Comput. Vis. Sci., 14 (2011), pp. 3--15, https://doi.org/10.1007/s00791-011-0160-x.
7.
M. B. Giles, Multi-level Monte Carlo path simulation, Oper. Res., 56 (2008), pp. 607--617, https://doi.org/10.1287/opre.1070.0496.
8.
M. B. Giles, Multilevel Monte Carlo methods, Acta Numer., 24 (2015), pp. 259--328, https://doi.org/10.1017/S096249291500001X.
9.
A. A. Gorodetsky, G. Geraci, M. S. Eldred, and J. D. Jakeman, A generalized approximate control variate framework for multifidelity uncertainty quantification, J. Comput. Phys., 408 (2020), 109257, https://doi.org/10.1016/j.jcp.2020.109257.
10.
V. Lemaire and G. Pagès, Multilevel Richardson-Romberg extrapolation, Bernoulli, 20 (2017), pp. 1029--1067, https://doi.org/10.3150/16-BEJ822.
11.
C. Mbaye, G. Pagès, and F. Vrins, An antithetic approach of multilevel Richardson-Romberg extrapolation estimator for multidimensional SDEs, in Numerical Analysis and Its Applications, Lecture Notes in Comput. Sci. 10187, Springer, Cham, 2017, pp. 482--491.
12.
E. H. Müller, R. Scheichl, and T. Shardlow, Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation, Proc. A, 471 (2015), 20140679, 20, https://doi.org/10.1098/rspa.2014.0679.
13.
B. Peherstorfer, M. Gunzburger, and K. Willcox, Convergence analysis of multifidelity Monte Carlo estimation, Numer. Math., 139 (2018), pp. 683--707, https://doi.org/10.1007/s00211-018-0945-7.
14.
B. Peherstorfer, K. Willcox, and M. Gunzburger, Optimal model management for multifidelity Monte Carlo estimation, SIAM J. Sci. Comput., 38 (2016), pp. A3163--A3194, https://doi.org/10.1137/15M1046472.
15.
B. Peherstorfer, K. Willcox, and M. Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60 (2018), pp. 550--591, https://doi.org/10.1137/16M1082469.
16.
R. Rannacher, Extrapolation techniques in the finite element method (a survey), MATC7, in Proceedings of the Summer School on Numerical Analysis, Helsinki University of Technology, 1988, pp. 80--113.
17.
L. F. Richardson, The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam, Philos. Trans. A, 210 (1911), pp. 307--357, https://doi.org/10.1098/rsta.1911.0009.
18.
W. Romberg, Vereinfachte numerische Integration, Skr. K. Nor. Vidensk. Selsk., 28 (1955), pp. 30--36.
19.
D. Schaden and E. Ullmann, On multilevel best linear unbiased estimators, SIAM/ASA J. Uncertain. Quantif., 8 (2020), pp. 601--635, https://doi.org/10.1137/19M1263534.
20.
M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer Ser. Statist., Springer-Verlag, New York, 1999, https://doi.org/10.1007/978-1-4612-1494-6.
21.
D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stoch. Anal. Appl., 8 (1990), pp. 483--509, https://doi.org/10.1080/07362999008809220.

Information & Authors

Information

Published In

cover image SIAM/ASA Journal on Uncertainty Quantification
SIAM/ASA Journal on Uncertainty Quantification
Pages: 953 - 978
ISSN (online): 2166-2525

History

Submitted: 25 February 2020
Accepted: 12 April 2021
Published online: 1 July 2021

Keywords

  1. uncertainty quantification
  2. partial differential equation
  3. Richardson extrapolation
  4. Monte Carlo
  5. multilevel Monte Carlo

MSC codes

  1. 35R60
  2. 62J05
  3. 62F12
  4. 65N30
  5. 65C05

Authors

Affiliations

Funding Information

Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 : 188264188/GRK1754

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media